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Abstract 

The control particle swarm optimization (CPSO) algorithm is introduced to solve the unit commitment problem under the 
background of emissions reduction. Because the standard particle swarm optimization algorithm is easy to fall into local optimal 
solution. The closed loop control concept and feedback mechanism of classical control theory are posited, each particle is considered 
as controlled object to meet the changing needs in searching process, while dynamically adjust the inertia weight by proportion-
Integra-derivative (PID) controllers according to the adaptation value of each step. These strategies greatly ensure the diversity of 

particles and improve the global search ability of the algorithm. The simulation results show that CPSO algorithm can reduce the 
dimension of the problem and ensure the feasibility of the particle in the optimization process, while it also has good convergence 

characteristics and global search ability． 
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1 Introduction 

 
From the view of mathematical, the unit combination 
problem is a multi-constraint non-deterministic polynomial 
(NP) hard combinatorial optimization problem (K. H. 
Abdul-Rahman et al.) [1]. It is difficult to obtain theore-
tically optimal solution. The typical algorithms for solving 
model include heuristics approach (S.K. Tong et al.) [2], 
dynamic programming (C.K. Pang) [3], branch and bound 
method (G.S. Lauer) [4], Lagrangian relaxation method 
(S.Dekrajangpetch et al., C.P. Cheng et al., W. Ongsakul et 
al.) [5-7] and the modern intelligent algorithm (S.S. Li et 
al., Z. Li et al., J.L. Lu, X.H. Zhang et al.) [8-11]. How-
ever, these algorithms have one or another defect (K. Han 
et al.) [12]. If the environmental constraints are considered 
into the model, the problem will become more complexi-
ties. But it is important to economic operation of power 
systems through improving the accuracy and speed of 
solution under various constraints. In this context, an 
objective function of emission reduction unit commitment 
is posed which considering the minimum cost and mini-
mum emission targets together by introducing emission 
price factor, and then, the original multi-objective problem 
can be transferred into a single objective problem, while a 
variety of constraints can be easily considered, in order to 
obtain the reasonable compromise between energy con-
sumption and emissions.  

In the specific solving algorithm, this paper presents a 
new set of inertia restructuring strategy through introdu-
cing the concepts of feedback mechanisms and closed-loop 
control system of control theory into the PSO system, then 
a control particle swarm optimization (CPSO) algorithm is 
formed. In this algorithm, a closed-loop control system is 
constructed while each particle sets as a controlled object-

tive. Fitness value of particle is used as the output variable 
and feed backed to closed-loop in the iterative process, and 
the updated inertia weight is calculated through a designed 
PID controller which has been widely used in industrial 
due to its single structural and robustness, then the velocity 
and position of the particle is adjusted. CPSO algorithm 
can satisfy the needs of each particle and greatly ensure the 
diversity of the population of particles, while improving 
the search capabilities of PSO algorithm. 

 
2 Mathematic models 

 
The goal of unit commitment optimization is to optimize 
the status and contributions of generators in the calculation 
scheduling cycle, while satisfying the some constraints, in 
order to achieve minimum energy cost or minimum 
pollutant emissions. 
 
2.1 OBJECTIVE FUNCTION 
 
2.1.1 Minimum Energy Cost 
 
The objective function can be expressed as follows: 
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i is index for the number of units, i=1,2, …, N, N is the 

total number of units; t is index for time, t=1,2, …, T, T is 

the total number of periods in the scheduling period. εi,t is 

the start-up and shut-down statue of unit i at time t. The 

start-up of unit is 1 and shut-down of unit is to 0. Si,t
up is 

the cost of start-up -and Si,t
down is the cost of shut-down 

for unit i at time t respectively. Si
up is the constant 

coefficient of cost of start-up and Si
down is the constant 

coefficient of cost of shut-down for unit i at time t 

respectively. fi(Pi,t
gen) is the generation costs of unit i, in 

$, ρi, μi and φi are cost coefficients of unit i. Pi,t
gen is the 

generation level of unit of unit i at time t, in MW. 
 
2.1.2 Minimum Pollutant Emissions 
 

The objective function can be expressed as follows: 
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ei(Pi,t
gen) is the emission costs of unit i. αi, βi and γi are 

cost coefficients of unit i, in $. The other symbols are 

same as those in last section. 

 
2.1.3 Total Objective Function 
 

Considering the minimum energy cost and minimum 

pollutant emissions together by introducing an emissions 
price factor ζi,t, the multi-objective problem turned into a 

single objective problem and the total objective function 

is defined mathematically as follows: 
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The emissions price factor ζi,t is defined as the proportion 

between maximum energy cost and maximum pollution 

emission of unit i, Pgen
i,max is the maximum generation 

capacity of unit i: 
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2.2 CONSTRAINTS CONDITION 

 
Power balance constraints: 
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where, Pgen
i,max and Pgen

i,min are the maximum and 

minimum generation capacity of unit i, in MW. Lt is 

system load demand at time t, in MW. Rt is system spin-

ning reserve demand at time t, in MW. Mi
on is the mini-

mum number of periods unit i, it must remain on ope-
ration statue after it has been start-up at time t, in hours. 

Mi
off is the minimum number of periods unit i, it must 

remain on out of operation statue after it has been shut-

down at time t, in hours. ti
on is the continuing number of 

periods unit i remains on operation statue after it has been 

start-up at time t, in hours. ti
off is the continuing number 

of periods unit i must remains on out of operation statue 

after it has been shut-down at time t, in hours. Zi,max
 is the 

maximum ramp rate of unit i, in MW/h. 

 
3 Outline of PSO 
 
PSO algorithm was proposed to solve optimization 
problems by Kennedy et al. [13], it was a kind of 
numerical optimization techniques which similarly with 
genetic algorithm. It is easy to know from the above 
literature that the forward movement of the particle swarm 
including the size and direction of the particles were 
decided based on the original speed, individual and global 
extreme weighted. 

   bj
best
brandbj

best
bjrandbjbj xgcxqcvv ,2,,1,1,   , (15) 

where j is index of particles, j=1,2, …, J. b is index for 

iterations, b=1,2, …, B. qbest
j,b is the individual best 

position of particle j in the iteration b. gbest
b is the best 

position of all the particles in the iteration b. vj,b and x,j,b 

are the velocity and location of particle j in the iteration 

b. ω, ϕ 1 and ϕ 2 are weight coefficients when velocity 

renewed. crand is the random number between 0 and 1. 

The particle swarm will be: 

1,,1,   bjbjbj vxx . (16) 

Each particle in swarm will execute parallel optima-

zation during the iterations according to its own inertial 

velocity and the best location in memory, while conside-

ring the best location which other particles experienced. 

Then the best optimization solution will be found through 

several iterations. 
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4 CPSO algorithm 

 
The inertial weight of each particle is always set as a 
relatively large initial value at the beginning of searching 
process, in order to make the particle moves fast. But this 
approach obviously has a weak point, which will lead to 
some particles located at the better location move too large 
distance to neglect some valuable searching area. If the 
inertial weight adjusted to a small value at the final stage of 
searching process, in order to make the particle to do more 
detail search. But this method will prevent some particles 
located at the worst location to overtake the other particles. 
So the same inertial weight value of particle swarm is not 
appropriation for each particle. The feedback mechanism 
and closed loop concept are introduced into PSO algorithm 
in order to overcome the shortcoming described above. 

Figure 1 shows a simple input and simple output 
(SISO) feed back control system, the controlled values y(t) 
and input values u(t) of object are usually defined as con-
trolled variable and manipulated variable of object 
respectively. The controlled variable y(t) is fed back 
through a sensor measurement H and transfer value h(t) to 
the reference value or set-point r(t).  

Each particle actually can be treated as an object. Its 
dynamic characteristics include current location, fitness 
value of last iteration and velocity. So the closed loop 
control system can be built for each particle, the fitness 
value is defined as controlled variable which is fed back to 
controller in iterations. Then a new suitable inertial weight 
will be calculated by controller according to the current 
fitness of particle and used for renewing the velocity and 
location. 
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FIGURE 1 Structure of a SISO closed control system. 

 

4.1 STRUCTURE OF PID 

 

PID controller is a control loop feedback mechanism 

(controller) widely used in industrial control systems and 

has historically been considered to be the best controller 

with simple structure and best robustness. So the PID is 

selected as controller in this CPSO algorithm. There are 

three separate constant parameters which also be named as 

three-term control in the PID controller algorithm: the 

proportional values denoted as P, the integral values 

denoted as I and derivative values denoted as D, the 

structure of PID controller is show at Figure 1.  

The output value Ξout which is proportional to the 
present error value e(t) is produced by the proportional 
term. The proportional response value can be revised in 
term of multiplying the current error value through a 
constant defined as Kprop, this term is also named the 
proportional gain constant. The proportional term is set as 
follows: 

 teK propout  . (17) 

The integral term Iout of a PID controller is the sum of 

the instantaneous error value during the time. This term 

will supply the accumulated offset value which should 

have been adjusted previously. The accumulated error 

term is then multiplied through the integral gain term 

defined as Kiteg and acted to the output value of controller. 

τ is the variable of integration which takes on values from 

time 0 to t. The integral term Iout is set as follows: 

   deKI
titegout


0

. (18) 

The main purpose of the integral term is to accelerate 

the movement of the object towards the reference value 

and reduces the residual steady state error term which 

produced with a pure proportional controller. 

The derivative term Dout of the object error is calcu-

lated through the determining the slope of the error value 

over the period of the time and multiplying this change 

magnitude according to the derivative gain constant Kderi. 

The role of the derivative term to the overall responding 

control action is effected on the basis of the derivative 

gain constant Kderi. The derivative term Dout is set as 

follows: 

 
dt
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KD deriout  . (19) 

The final standard form of the PID controller algo-

rithm is given by: 
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     thtrte  , (21) 

where, each parameter has a clear physical meaning in 

this form. TI is defined as the integral time constant and 

TD is defined as the derivative time constant. 

Ipropiteg TKK / , (22) 

Dpropderi TKK  . (23) 

Sometimes it is useful to rewrite the PID controller in 

Laplace transform form. It is easy to determine the closed 

loop transfer function if this form is adopted. 

  sTsTKsG DIprop  /11)( . (24) 

PID controller can be adjusted according to Kprop
, TI 

and TD, these parameters are constructed as gain vector. 
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4.2 DEFINITION OF CPSO 
 
There are J numbers of particles in whole swarm. Wj is the 
j particle, j=1,2, …, J. The manipulation variable uj is 
defined as inertia weight factor. The output value of object 
is yj defined as the fitness value of last iteration. Hj is the 
transfer function of feed back tunnel. It is also named as 
measurement sensor. Its output value is hj. These para-
meters are given by the following equations: 

jju  , (25) 

ave
j yH /1 , (26) 

ave
jjjj yyyHh / , (27) 

where, ε is adjust factor and generally to be set as 1. yave 

is average value of current fitness for all particles. The 

parameter hj is the evaluation term for particle Wj. The 
particle can be treated as a relative optimization location 

if hj is larger than 1, on the contrary the particle is consi-

dered as lag location. The reference value is set as 1, and 

then the error term ej is given as follows: 

      ave
j yythtrte /1  . (28) 

The δ is defined as gain vector of PID controller for j 

particle. 
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i TTK 0,20/,1,,  . (29) 

The gain proportion parameter Ki
prop will to be set 

lower than zero, because the movement magnitude of the 
particle which traps into local extreme value needs to be 
given larger inertia weight. The particle at a relatively 
optimization position need to be given a smaller inertia 
weight, in order to do more meticulous searching. Because 
the stability error will be introduced if the controller just 
include the proportion module, so the integral term should 
be added into the controller to eliminate the error term. The 
integral time constant Ti

I means it can play the same role as 
proportion term past Ti

I time. The specific problem is that 
the excess overshooting will be shown if integrator term is 
added into PID controller. Further more the integral win-
dup will be caused. Some measures must be adopted to 
prevent this phenomenon. There is a simple anti integrator 
windup strategy for control PSO is given as follows: 
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δj 
low and δj 

up are low and up limit of inertia weight ωj. Φ
ite 

is the maximum iteration number. Because inertia weight 
and particle search area ranges are predefined between 
bounded set. Therefore, the output variables which are 
fitness value of the particle are bounded, the situation does 
not appear divergent. That means the closed-loop stability 
is guaranteed. 

There will be more effective control if the derivative 
term added into controller, but at the same time the proba-

bility of unstable statute is also increased, so the derivative 
time constant is defined as zero in CPSO. 
 
4.3 SOLVING STEP OF CPSO 
 

The solving step of control PSO is as follow. 

Step 1: Initialize the particles swarm and the initial 

iteration number φi is set as zero. 

Step 2: Iteration calculation of particles. 

Step 3: Renew the current individual particle best posi-

tion qbest,j, the current best position gbest of all the particles 

swarm and the fitness value. 

Step 4: If the iteration number φi does not reache the 

maximum iteration number Φite, then the inertia weight ω 

is calculated through: 

  esTsTK DIprop  /11 . (31) 

Iteration calculation of particles by using new inertia 

weight ω, iteration number φi increases as follows: 

1 ii  . (32) 

Go to Step 2. 

Step 5: If the iteration number φi reaches the maximum 

iteration number Φite, then the evolution stops and the 

best position value is outputted. 

 
5 Solving unit commitment problem under emissions 

reduction 
 
5.1 CODING METHOD 
 
The generation of all the units in different period will be 
connected as an individual of CPSO and represented by 
N×T matrix. This matrix is shown as follows: 
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 (33) 

where, Pk
gen is the k individual of particles swarm. Pi,k

 is 
element of the i row and t column in the coding matrix, it 
represents the generation of unit i during the period t. Qt

 is 
the t column vector in the coding matrix, it represents the 
unit statute of all units during the one period of all dispatch 
times, this vector can be used to calculate the cost of 
production and economic dispatch. Ri

 is the i row vector in 
the coding matrix, it represents the start-up and shut-down 
statute of all units during the all dispatch periods, this 
vector can be used to calculate the cost of start-up and 
shut-down for unit, but it must satisfy the minimum ope-
ration time constraints or out of operation time constraints. 
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The operation status of unit is decided by the element of 
matrix, furthermore the start-up or shut-down status is 
decided according to the generation of unit, this is given as 
following: 
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Velocity matrix of CPSO algorithm is set as follows, 
where, Vk

gen is the velocity component of element Pk
gen in 

the particles swarm. 
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5.2 FITNESS FUNCTION 

 

The objective function of unit commitment optimization 

under emissions reduction is set as fitness function of 

CPSO algorithm. The lowest fitness value means the 

lowest operation cost, moreover it is the best solution. 

 

5.3 INDIVIDUAL STRATEGY ADJUSTMENT 

 

Because the individual particle may not satisfy the cons-

traint conditions after initialization or renewable, so the 

individual particle needs to be adjusted in order to meet the 

constraints. The procedure is given as follows. 

 

5.3.1 Reduce Dimension 

 

Unit commitment is a high dimension optimization prob-

lem. The dimension is reduced in the searching process by 

using the implicit information through mining the cons-

traints. The minimum number of operation unit during the 

period t is given by spinning reserve constraints Equation 

(10). And only the previous χ unit during period t under the 

operation status according to the priority sorting, that 

means the following constraint is satisfied: 

gen
i

gen
k PP min, ,  i1 . (36) 

The Equation (37) also can be obtained according to 

the power balance constraints Equation (9) and up and 

down generation constraints of unit Equation (11): 

t

N

i

tii LP 
1

,min,   (37) 

There are γ units are out of operation during t, more-

over, it means the maximum number of operation unit 

can also be obtained according to Equation (37). So only 

χ+1 to N-γ status for element Pi,t
gen of matrix Pk

gen needs 

to be optimization: 

0, gen
tiP , NiN  1 . (38) 

 
5.3.2 Constraints Handling 
 
The individual of particle swarms adjusted to meet the 
constraints will be implemented as follows: 

(i) Adjust the components of location matrix in order 

to make it meet the generation constraints of units, 

according to the (39). 

(ii) Adjust the start-up and shutdown status of units to 

satisfy the spinning constraints. If the sum of maximum 

generation of units under the operation status is lower 

than the sum of total load and spinning at current time, 

then the units under the out of operation status while meet 
the minimum out of operation time constraints need to be 

start-up, in accordance with the order of priority until the 

total generation reaches the requirement of system. The 

unit start-up order of priority is decided according to the 

literature (S. Dekrajangpetch et al.) [5], it means the units 

which have the lower incremental rate of cost will be set 

as the higher priority level. On the contrary, the units will 

be treated as lower priority level. 
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(iii) The total generation of all units probably not 

equals the total load demand during some periods. So the 

load needs to be adjusted. If the total technology 

generation of units under operation status is larger than 

the total load at current time, then these units which 

satisfy the minimum operation time constraints need to be 

shutdown according to the priority sorts. 

(iv) If the total generation is lower than the total 

demand at current time, then the generation of units needs 

to be increased, in order to meet the power balance 

constraints. If the total generation is larger than the total 
demand at current time, then the generation of units under 

operation status should be reduced. But the ramp rate 

constraints and generation constraints of unit must be 

satisfied in the process of adjustment. 

Some problems may be appeared after the above 

adjustment of individual. Furthermore, the total maximum 

of technology generation of units under operation status is 

still lower than the sum of total demand and spinning 

reserve at current period. Because the demand increases so 

fast, which induced by some units were shut-down during 

some periods, but this units cannot start-up according to 
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the change of demand for minimum start-up time const-

raints. So the shut-down decision of units need to be re-

evaluated before this period, the shutdown decision should 

be replaced by reducing the technology generation of units, 

while satisfy the power balance constraints. 

 

6 Simulation and analysis 

 

The 9 units system is used to test the proposed method. 

The main parameters are given as following tables. Table 1 

and Table 2 show the unit system data. The result of eco-

nomic dispatch of unit commitment is shown as Table 3. 

The emission quantities of three different dispatch models 

are shown as Figure 2. The first scene represents the objec-

tive function is set as minimum economic dispatch and the 

average emission quantity is 346.7458lb, this is the highest 

scene. The second scene represents the objective function 

is set as minimum emission dispatch and the average 

emission quantity is 279.9292lb, this is the lowest scene. 

TABLE 1 9-units system data (Unit cost data and emission data) 

Unit ρi($/h) μi($/MWh) φi($/MW
2
-h) Start cost($) αi(lb/h) βi(lb/MWh) γi(lb/MW

2
-h) 

1 142.735 10.6940 0.00643 200 24.300 0.81 0.0036 

2 230.00 19.1000 0.00712 115 27.023 0.10 0.0035 

3 81.136 13.3272 0.00876 80 27.023 0.50 0.0330 

4 81.298 13.3538 0.00895 80 22.070 0.30 0.0034 

5 218.335 18.1000 0.00612 100 24.300 0.81 0.0380 

6 87.136 19.3272 0.01036 80 29.040 0.03 0.0034 

7 118.821 37.8896 0.01433 30 29.030 0.02 0.0039 

8 128.821 39.8896 0.01633 30 27.050 0.02 0.0030 

9 187.364 49.3272 0.02436 70 22.070 0.30 0.0034 

TABLE 2 9-units system data (Unit operation data) 

Unit Up(h) Down(h) Initial(h) Rup(MW/h) Rdown(MW/h) Pmax(MW) Pmin(MW) 

1 5 3 5 78 78 155 54 

2 4 2 -3 50 50 100 25 

3 3 2 3 38 38 76 15 

4 3 2 3 38 38 76 15 

5 4 2 -3 50 50 100 25 

6 3 2 3 25 25 50 10 

7 1 1 -1 20 20 20 4 

8 1 2 -1 20 20 20 4 

9 3 2 3 25 25 50 10 

TABLE 3 The results of unit commitment under different scenes 

Hour Scene1(Units 1-9) Scene2(Units 1-9) Scene3(Units 1-9) Load(MW) θec($/lb) 

1 101 110 000 110 101 001 111 101 000 355 17.78 

2 101 110 000 110 101 001 111 101 000 327 8.07 

3 101 110 000 011 111 001 111 101 000 309 8.07 

4 101 110 000 011 111 001 111 101 000 290 8.07 

5 101 110 000 010 111 001 101 100 000 281 8.07 

6 101 110 000 010 111 001 101 100 000 281 8.07 

7 101 110 000 011 111 001 101 100 000 290 8.07 

8 111 100 000 110 101 001 101 110 000 318 8.07 

9 111 110 000 110 101 001 111 110 000 364 17.78 

10 111 110 000 110 101 001 111 110 000 400 17.78 

11 111 110 000 110 101 111 111 110 000 409 27.63 

12 111 110 000 110 101 111 111 111 000 414 27.63 

13 111 110 000 110 101 111 111 101 000 409 27.63 

14 111 110 000 110 101 001 111 101 000 400 17.78 

15 111 110 000 110 101 101 111 101 000 396 17.78 

16 111 110 000 110 101 111 111 101 000 396 17.78 

17 111 110 000 110 101 111 111 101 000 414 27.63 

18 111 110 000 111 101 111 111 111 000 455 27.63 

19 111 110 000 111 101 111 111 111 000 450 27.63 

20 111 110 000 111 101 111 111 111 000 441 27.63 

21 111 110 000 111 111 111 111 111 000 428 27.63 

22 111 110 000 110 111 111 111 101 000 418 27.63 

23 111 110 000 110 111 111 111 101 000 396 17.78 

24 101 110 000 010 111 111 111 101 000 368 17.78 
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The fuel cost of three different dispatch models are 

shown as Figure 3, the first scene represents the objective 
function is set as minimum economic dispatch and the 
average fuel cost is $5861.38, this is lowest scene. The 
second scene represents the objective function is set as 
minimum emission dispatch and the average cost is 
$9345.38, this is the highest scene. The third scene 
represents the objective function is set as comprehensive 
dispatch of unit commitment and the average cost is 
$6227.13, this scene is interposed between the two cases 
described in the foregoing. All these problems are solved 
by control PSO algorithm. The total cost of three different 
dispatch models are shown as Figure 4, the first scene 
represents the objective function is set as minimum 
economic dispatch and the average cost is 12687.7625$, 
this is interposed between the scene1 and scene 2. 

 

FIGURE 2 The emissions under different dispatch models by CPSO 

 

FIGURE 3 The fuel cost under different dispatch models by CPSO 

 

FIGURE 4 The total cost under different dispatch models by CPSO 

 
The second scene represents the objective function is 

set as minimum emission dispatch and the average cost is 
$14954.04, it is the highest scene. The third scene repre-

sents the objective function is set as comprehensive dis-
patch of unit commitment and the average cost is 
$11918.88, it is lowest. Above results show that the total 
cost will increase so fast if too emphasize the emission 
reduction, so the relatively balance approach considering 
the emission reduction and economic dispatch together is 
needed.  

Figure 5 shows the results distribution of total cost of 
comprehensive unit commitment under emission reduction 
by different algorithms including PSO, GA, and CPSO. 
Continuous simulating 30 times, the best solution of PSO 
is $286882.55, the worst solution of PSO is $294377.14. 
The deviation of the worst solution with respect to the best 
solution is 2.91%, and about 53.4% solution deviates from 
the best solution is lower than 1.5%. 

 

FIGURE 5 The results distribution of total cost of comprehensive unit 

commitment under emission reduction through different algorithms 

The best solution of GA is $286682.31, the worst solu-
tion of GA is £305275.76. The deviation of the worst 
solution with respect to the best solution is 6.34%, and about 
26.3% solution deviates from the best solution is lower than 
1.5%. The best solution of CPSO is $286253.24, the worst 
solution of CPSO is $291573.82, the deviation of the worst 
solution with respect to the best solution is 1.93%, and about 
76.7% solution deviates from the best solution is lower than 
1.5%. So the robustness and precise of CPSO are obviously 
best than the other algorithms. 

 
7 Conclusions 

 
There are following conclusions according to the simu-
lation: 
(i) The objective function considering the minimum cost 

and minimum emission targets together is more 
reasonable to discuss the unit commitment problem, 
because the environmental factor has same important 
role as economic factor. 

(ii) The emission price factor is introduced into the 
model, this will helpful to transfer the multi-objective 
optimization problem to the single-objective 
optimization problem. 

(iii) The total cost will increase so fast if too emphasize 
on the role of emission reduction, so the balance need 
to be selected between the target of economic and 
emission. 

(iv)  CPSO algorithm shows robustness and precise than 
the other algorithms. 
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