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Abstract 

It is known that the linear active disturbance rejection control (LADRC) is very an effective approach to control the uncertain 

systems. The linear extended state observer (LESO) is the major link of the LADRC, so this paper presents a modified LESO, which 

is used to track the state variables and estimate the unknown total disturbance. Furthermore, this paper redefines the “time-scaling” of 

the plant, which is a function with respect to the amplitude of the unknown total disturbance. It is first time to present the specified 

formula of the maximum sampling-period of LESO for some existing plants. On the anther hand, the tracking ability of the designed 

LESO is quantitatively described in this paper. The discussions and analysis, especially the quantitative formulas presented in this 
paper, will help the scholars and engineers to design the LESO in practice. 
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1 Introduction 

 
The linear extended state observer (LESO) [1], as a 

mayor link of linear active disturbance rejection control 

(LADRC), was proposed by Prof. Gao in 2003. Since 

then, it is applied in many industrial fields, and shows 

promising control performance in practice. Recently, 

some breakthroughs of theoretical researches on LESO 

were obtained, such as in this paper [2], the rigorous 

proof of asymptotical convergence of LESO was given 

with some boundary constraint. And it was proven in [3] 

that the convergence of non-linear extended state 

observer (ESO) for a class of multi-input multi-output 

nonlinear systems with uncertainty can be feasible if the 

non-linear functions for observer are properly 

constructed. The researches in [4] showed that estimation 

and tracking errors of LESO are bounded, with their 

bounds monotonously decreasing with their respective 

bandwidths for large dynamic uncertainties. In particular, 

the observer bandwidth and closed-loop bandwidth were 

presented in [1], which is helpful in understanding the 

LESO easy from a physical perspective, and contributes 

to spreading out LESO applied in various fields. 

In contrast to both theoretical and qualitative analysis 

of the LESO, this paper makes an offer to quantitatively 

analyses the latent tracking ability of LESO, which 

decided the disturbance rejection ability of the specific 

controller based on LADRC. This paper has presented a 

modified LESO, which not only track the state variables 

of plant, but also estimate the unknown total disturbance 

including the external disturbance and unknown model 

disturbance but excluding the known partial model, and 

redefined the “time-scaling” of the plant. Moreover, it is 

first time to present some specified formulas to judge the 

tracking ability of the LESO, and present some criterion 

to design the LESO for some specified plants. Following 

the principia, described in this paper, the LESO will be 

properly designed soon and implement well, which is 

proven by the simulations in section III. 

 

2 Analysis of the Tracking ability of the LESO 

 

In general case, considering a nth order system, which 

may be nonlinear and time-varying, with a uncertain 

disturbance as follow: 
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where X  is the system state variable vector 
T

n
xxx ][

21
 , 

u  is the control output of the controller, and y is the 

measure output. )(f  is a uncertain generalized 

disturbance including the unknown system dynamics 

module, also named total distance including the internal 

disturbance and the external disturbance. 

As we know that the corresponding linear extended 

state observer (LESO) of above system (1) with 

differential form is constructed as follow: 
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where the new variables 
1

z , 
2

z , …, and 
n

z  in (2) are the 

estimates of state variables 
1

x , 
2

x ,… and 
n

x  

respectively, while the variable 
1n

z , namely known as an 

augmented state variable, is the estimate of )(f  named 

the total disturbance. 

A problem is proposed that how to enhance the 

tracking ability of the specified LESO, in other words, 

how much little tracking errors of the state variables can 

be actively got by the LESO within the constraints of the 

sampling-period in practice. This is very important to 

properly design the ADRC, because it determines the 

disturbance rejection ability of ADRC based on LESO. 

In this section, the state variables tracking ability of 

LESO is discussed. Let us investigate the following plant 

system as 
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where ),,( twXf , the unknown total disturbance, 

including the external disturbance and the unknown part 

of the plant’s model, ),( tXg  is the known part of the 

plant model. A modified LESO of the system (3) is 

proposed and constructed as follow: 
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where 
1n

z , extended state variable, estimates the 

unknown total disturbance, which including the unknown 

part of the plant’s model. Owing to including the known 

part of the plant model in nth equation of expression (4), 

the modified LESO reduces the requirements of work 

speed of hardware, and improve the control precision and 

performance of the controller. 

The conception of “time-scaling”, denoted as  , is 

proposed and defined in [5]. Similarly, there the “time-

scaling” of the plant (3) can be defined as bellow. 

Definition 2.1: the plant’s “time-scaling”, denoted as 
 , of plant (3) is redefined as 
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bounded for any  t0 . And the plant with 1  is 

named typically “canonical system” or “canonical plant”. 

The following theorems and proofs are just discussed 

about the second order systems, but the conclusions are 

also correct for the nth order system.  

Theorem 2.1: The maximum sampling-period, 

denoted as max
  within the permit of the tracking 

estimation error   demanded in practice, of the LADRC 

based controller is depended on the plant’s inherent 

“time-scaling”, defined as   in definition 2.1. 

Proof: A typical second order plant, represented by 

the state space equation, can be described as: 
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   is the 

state vector and its derivative, respectively. And ),( tXg  

is the known part of the plant’s model, and )(tf  is the 

derivative of ),,( twXf , the uncertain function, which is 

bounded and continuous or piecewise continuous during 

an interval Tt 0  for any 0T .  

The LESO of the above plant (6), according to 

preceding description, is constructed as 
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where  TL 3

0

2

00
33  , is the observer gain vector, 

 TzzzZ
321

  is the estimate vector of X. 

Then, subtracting (6) from (7) on both sides at the 

same time, the dynamics estimation error is obtained as: 

)()()()( tfEtdELCAtEd   , (8) 
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Assume the sampling-period is  , the discrete form 

of (8) becomes as: 

        

         

       






































10

10

11

1

kfEHdELCAI

kfELCAIdELCAI

kfEkdELCAIkdE

ikk

k

i

ikk







, (9) 

where 

























10

13

031

))(((
3

0

2

0

0







LCAI  and 

kiELCAIH ii ,,2,1,))(((   . 

Assuming that 3,2,1),0()0(  ixz
ii

, i.e. those initial 

values are equal, at the beginning of the LADRC based 

controller acting. 

Let 
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 m
0 , where 10 m  is proposed [6], then 

the vector term 
iH  can be computed as: 
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Having an insight into (10) and (9), it is obvious that 

the tracking estimation error, 
111

zx  , is obtained as 

follow: 
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So as long as the design requirements error   

satisfies 



3

2

m

M
 in practical engineering, then the 

actual tracking estimation error 
1
  will meet the design 

requirement. As a result of the above analysis, the 

following inequality expression is yielded as 


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 3
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which can be transformed into 

max
  , (13) 

where  3

max
m . That is to say the “time-scaling” of 

the specific plant demands that the sampling-period of 

controller must be smaller than the 
max

 , determined by 

(13), to meet the desired design allowable error  . 

Remark 2.1: Those plants, whose “time-scaling” are 

larger than the minimum “time-scaling” min which the 

controllers possess, can be controlled well by these 

LADRC based controllers. 

Proof: The proof is obvious, form (12), the following 

inequality expression can be derived 
3m


  , which 

can also be converted as: 

min
  ,  (14) 

where 
3

min

m


  , which is decided by the sampling-

period and the allowable tracking error of the controller. 

That is to say, the specific sampling-period   and the 

demanded the tracking estimation error of the controller 

is given, then the disturbance rejection ability of this 

LADRC based controller is determined. In other words, 

the maximum amplitude of the plant’s unknown 

disturbance is 
2

min

1


 for second plant. 

 

3 Simulations 

 

Assume there is a plant, which is a second-order system 

and described in state space as follow: 
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where ),,(
21

txxf  is the unknown disturbance excluding 

the known part of the plant’s model. From previous 

analysis, it is known that its corresponding modified 

LESO is: 
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where, we adopt the sampling-period ms1 , the 

observer bandwidth 300
0
  and 0u  respectively. Let 

us investigate the performance of above specified LESO 

on the various plants with different “time-scaling”. 

Assuming there are three plants with different unknown 
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disturbance ),,(
21

txxf , which are designated as the 

following three various expression:  

A. )28.6sin(100),,(
21

ttxxf  , 

B. )28.6sin(1000),,(
21

ttxxf  , 

C. )28.6sin(4000),,(
21

ttxxf  , 

which are regarded as three various plants whose “time-

scaling” are 1.0
1
 , 0316.0

2
  and 0158.0

3
  

respectively. The simulation results are shown in figure 1 

with the results of the plants A, B and C corresponding to 

subgraph (a), (b) and (c) respectively. And subgraph (d) 

in figure 1 shows the tracking errors along with the 

output y of the above three plants. 

The subgraph (d) in figure 1 demonstrates that the 

tracking error is the largest on the plant C (the green 

curve in subgraph (d)) and that is the smallest on the 

plant A (the red curve in subgraph (d)). That to say, the 

larger the “time-scaling” of plant, the smaller of the 

tracking error is for the same LESO. 

Suppose that the demanded tracking estimate error, in 

practice, is less than 0.02, then the above LESO can well 

track those plants whose “time-scaling” are larger than 

0.043, i.e. 043.0
min
  , which can be obtained from 

inequality expression (14). 

On the other hand, figure 2 shows the simulation 

results about the LESO with different sampling-periods 

acting on the same plant A expressed above. The 

sampling-period of LESO, shown in figure 2, is ms1
1
  

in subgraph (a), ms2
2
  in subgraph (b), ms4

3
  in 

subgraph (c), and the three tracking errors are displayed 

in subgraph (d) in figure 2. The subgraph (d) in figure 2 

demonstrates that the tracking error is the smallest with 

sampling-period ms1
1
  (the red curve in subgraph (d)) 

and in contrast, that is the largest with sampling-period 

ms4
3
  (the green curve in subgraph (d)). In other 

words, the smaller the sampling-period of LESO is, the 

higher the tracking precision is without considering the 

sampling noise. Assuming the required tracking error is 

02.0 , this demands the maximum sampling-period of 

LESO is ms3.2
max

  obtained from the inequality 

expression (13) to track the state variables well. 

 

4 Conclusions 

 

In this paper, the tracking performance of the LESO is 

discussed by the quantitative description. It is first time 

that the maximum sampling-period of LESO is presented 

by a specified formula (13) for an existing plant. On the 

other hand, the tracking ability of the designed LESO is 

presented by formula (14). The theory analysis in section 

II and simulation results in section III both show that the 

smaller the plant’s “time-scaling”, the larger tracking 

error is, using the same LESO. Conversely, the shorter of 

the sampling-period of LESO, the higher the tracking 

accuracy is for the same plant. The above discussions and 

analysis, especially the quantitative formulas (13) and 

(14) will help the scholars and engineers to design the 

proper LESO in practice. 
 

  

  
FIGURE 1 The comparison of tracking errors of the same LESO acting on various plants with different “time -scaling” 
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FIGURE 2 The comparison of tracking errors of the LESO with different sampling-period acting on the same plant  
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