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Abstract 

Form-finding is the important problem to be solved in the cable structure analysis, to the different forms of loads, the direct iterative 

method is used to determine the initial configuration of the cable structures. Horizontal tension or cable tension is used as iterative 

convergence condition, the form-finding of the cable is researched under its own gravity, uniform ice and non-uniform ice load. As for 

the multi-span transmission lines, two conditions of uniform ice and non-uniform ice loads on the whole span were analysed. The 

results of initial configuration are consistent with the analytical method, which verified the correctness of the direct iterative method, 

under the condition of non-uniform ice load, the stress of conductor is larger than the maximum stress, which is very dangerous in the 
actual operation. 
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1 Introduction 

 

In the design of transmission lines, the sag, stress and 

length of transmission lines are very important parameters, 

which are the main contents to the mechanics research of 

transmission lines, this is because the sag and stress 

directly affect the safety of operation, the small changes 

and error of cable length will make considerable change to 

the sag and stress, form-finding is the primary problem to 

be solved before the analysis and calculation of the cable 

structures, which is the fundamental prerequisites for 

dynamic response. Currently, there are four methods for 

the form-finding analysis of cable structures: 

1) The nonlinear finite element method [1,2]; 

2) The force densities method [3]; 

3) The dynamic relaxation analysis of form-finding [4, 

5];  

4) The exact element method [6]. 

The nonlinear finite element method is most widely 

used for form-finding. In previous study, the dynamic 

analysis of cable structures is often assumed to the initial 

curve with simple shape, the uniform ice and some other 

non-uniform distributed loads are considered as the ideal 

uniformly distributed loads, but in many cases, the 

thickness of ice is not same along the conductors, 

especially in some micro topography and micro climate 

area, transmission lines have large elevation difference and 

big spans, the conductor suffers serious non-uniformly 

distributed load [7]. Such as the jumping induced by 

transmission line ice-shedding [8], the research for the 

dynamic response of ice-shedding on bundled 

transmission lines [9], and vibration of bundled conductors 

following ice shedding [10]. The dynamics analysis of the 

overhead transmission lines with non-uniformly 
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distributed load is accurate based on form-finding, which 

will be very important to the design of the cable structures. 

 

2 The load distribution of cable structures 

 

The transmission lines belong to one kind of cable 

structures, the theory of cable structures are based on two 

assumptions: 

1) The cable is flexible: it neither suffers the pressure 

nor bending; 

2) The material of the cable structures follows Hooke’s 

law. 

Figure 1 shows an infinitesimal piece of cable, H is 

horizontal component of the tension T in the tangential 

direction. V is the vertical component of the T, qx is the 

distributed load along the x direction, qy is the distributed 

load along the y direction. 

 
FIGURE 1 Equilibrium of an infinitesimal piece of cable 
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The equilibrium equation of the horizontal direction is: 

0x

dH
q

dx
  . (1) 

The equilibrium equation of the vertical direction is: 

0y

dV
q

dx
  . (2) 

As 
dy

V H
dx

  Equation (1) and (2) can be transformed to: 

0x

dH
q

dx
  , (3) 

0y

d dy
H q

dx dx

 
  

 
. (4) 

Equation (3) and (4) are the governing differential 

equations of transmission line shape curve. The task for 

form-finding is to determine the transmission line shape 

curve, which is to obtain the equilibrium of the applied 

pretension and external loads by adjusting the form of 

cable under the given boundary condition. 

The uniformly distributed load on the cable structure is 

generally divided into two forms: 

1) uniformly distributed load along chord line of the 

cable, the shape of cable is parabola; 

2) uniformly distributed load along arc length of cable, 

the shape of cable is catenary, such as the shape of the 

cable under the action of gravity. 

According to the theoretical analysis, the smaller the 

sag of cable is, the smaller difference of two forms is, to 

the actual transmission lines, the sag of cable is very small, 

when the uniformly distributed load is along chord line of 

the cable, the error of sag is small, it can be received by 

engineering. The gravity of transmission lines is uniformly 

distributed along arc length of cable, therefore, under the 

action of its own gravity, the shape of the transmission line 

is catenary, rather than a parabola. When the span is small, 

the sag-span ratio is smaller, the difference is the smaller 

[11], generally in engineering, if the sag-span ratio is less 

than 1/8 [12], it can get enough precision of calculating 

with a parabolic curve. 

 

3 The overall analysis of cable structures 

 

Figure 2 shows a typical joint J, Fzie is vertical force of 

the endpoint i in the element e, (i changes with different 

element), PJ is the concentrated force acted on the joint J. 

 
FIGURE 2 Joint J 

The vertical equilibrium equation can be written as: 

0
J

e

zi J

e

F P  , (5) 

where, eJ presents the element connecting with joint J, 

Equation (1) can be written as: 

 1 1 2 2

J J

e e e e e

i i J Ei

e e

k z k z P P    . (6) 

According to the overall integration method, the 

equation of the global stiffness matrix is: 

KZ P , (7) 

where K is the global stiffness matrix, P is the resultant 

force from PJ and PEi
e, Z is vector of vertical coordinates. 

The state equation of transmission lines is: 

 
2 2 3 2 2 3

2 1

02 01 2 12 2

02 01

cos cos

24 24

E l E l
E t t

   
  

 
     , (8) 

σ01, σ02 - the stress of transmission lines at the lowest of 

sag under two kinds of state, MPa; 

γ1, γ2 - the specific load of transmission lines under two 

kinds of state; 

t1, t2 - the temperature of the transmission lines under two 

kinds of state; 

l, β - the span and the angle of differential elevation; 

α, E – the temperature expansion coefficient and elastic 

modulus. 

 

4 The basic principles of form-finding for transmission 

line 

 

The direct iterative method is used to determine the initial 

configuration of the cable structure, the basic principles of 

the direct iterative method is connecting the chord line as 

the model, using actual material properties and real 

constants, and set a small initial strain, and then applying 

the gravity which distributed along the arc length, and 

gradually update the finite element model, the horizontal 

tension or cable tension is chose as iterative convergence 

conditions, the final result is initial deformation of cable 

structures under its own gravity, the basic process is 

showed as Figure 3: 
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e
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FIGURE 3 The flow chart of form-finding 

 

5 The finite element model of the single span 

transmission conductor 

 

5.1 THE ESTABLISHMENT OF THE CONDUCTOR 

MODEL 

 

The finite element method of conductors is transforming 

the infinite degrees of freedom into a limited degree of 

freedom. The conductor should be discreted, the stiffness 

matrix is established through the appropriate shape 

function of link element, the global stiffness matrix is 

integrated, the basic equation is established according to 

the node displacement vector and the node load vector, 

applying the boundary conditions, the node displacement 

can be got by solving the basic equations. 

The transmission line belongs to a kind of flexible 

cable structures, which has strong geometric nonlinearity, 

the geometric characteristics of small strain and large 

rotation will make stiffness matrix change nonlinearly, the 

stiffness matrix of structure becomes the function of 

geometric distortion, the form-finding of transmission 

lines should open large deformation options in the ANSYS 

and set the time step, the stress effect should be considered 

in order to ensure the accuracy of the results. 

The form-finding for the transmission lines is analysed 

by the software ANSYS, the link 10 unit is chose to 

simulate the lines, the model is connecting a straight line 

between two points, the straight line is divided into a 

number of straight link 10 units, the two points are 

imposed fixed constraints, the gravity loads are imposed 

along the arc length. The equilibrium configuration of the 

transmission lines has got under the action of the gravity 

load, the form-finding of iced transmission lines is based 

on the equilibrium configuration under gravity. Set 

nonlinear solution selection. The equilibrium 

configuration of iced transmission lines is solved, the 

form-finding of transmission lines is finished under the 

action of ice load. 

Select an overhead transmission line with different 

height of suspension points, the span is l = 1000 m, the 

elevation difference between the two suspension points is 

h = 40 m, the conductors choose LGJ – 400/35, the 

technical parameters are shown in Table 1. The ice 

thickness is 20 mm, the weight per unit length is 15.02 

N/m, and the ice density is 0.9 g/cm3. The mechanical 

parameters of ice are shown in Table 2. 
TABLE 1 the technical parameters of conductor 

Number of 

conductor 

Cross-sectional area 

(mm2) 

Tensile force of 

calculation (N) 

Mass per unit 

length (kg/km) 

allowable stress 

[σ0] (Mpa) 
Diameter (mm) 

one 425.24 103900 1349 92.8 26.82 

TABLE 2 the mechanical parameters of ice 

Variables 
Numerical 

value 

The thickness of ice (mm) 20 

Density (kg/mm3) 9×10-7 

Poisson's ratio 0.3 
The damping ratio 0.1 

Coefficient of Comprehensive elasticity (Gpa) 10 
Coefficient of Comprehensive expansion (1/°C) 50×10-6 

5.2 THE FORM-FINDING OF TRANSMISSION LINES 

UNDER THE ACTION OF GRAVITY 

 

The conductor is divided into 100 units, the horizontal 

tension or cable force is the convergence criterion for 

iteration, the displacement vector diagram of conductor 

under gravity load as shown in Figure 4, it can be seen that 
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the biggest displacement vector of conductor is 0.654 m, 

the conductor tends to equilibrium state. 

 

 
FIGURE 3 The displacement vector diagram of conductor under gravity 

load (m) 

 

5.3 THE FROM-FINDING OF ICED TRANSMISSION 

LINES 

 

In many cases, the ice on the conductor is not uniform, it 

is assumed that the weight is equal with uniform ice and 

non-uniform ice, the weight of ice on the conductor is 

measured by the ellipse method or the total weight method, 

the thickness of uniform ice is 20mm, distributing along 

the span of the conductors, the ice thickness of different 

position of is different, which makes the changes of sag 

and stress are also different, the transmission line is 

divided into five sections under the action of non-uniform 

ice load, the horizontal projection length of each section is 

200m, the distribution of ice is shown in Table 3. 

TABLE 3 The distribution of ice 

the case of ice 
the section of ice distribution (mm) 

1 2 3 4 5 

uniform ice 20 20 20 20 20 

non-uniform 

ice 

A 30 25 20 15 10 
B 20 30 25 15 10 

C 10 20 30 25 15 

Through calculation, the displacement (namely the 

sag) and stress can be got, analytical values and nonlinear 

finite element simulation values of representative nodes 

are listed in Tables 4 and 5 under the condition of self-

gravity. It can be seen that the absolute value of the 

difference between the simulation value with the analytical 

value is very small, which shows that application of the 

finite element method to find form of transmission lines is 

correct and feasible. 

TABLE 4 The sag of conductor 

  11 21 31 41 51 61 71 81 91 

self-gravity 
analytical value 24.73 32.23 37.69 40.97 41.53 41.41 38.13 33.34 26.45 
simulation value 24.82 32.08 37.34 40.60 41.85 41.07 38.25 33.41 26.53 

uniform ice 
analytical value 25.87 32.74 38.86 41.78 42.94 42.75 39.44 34.35 26.73 

simulation value 25.11 32.63 38.55 41.53 42.86 42.08 39.18 34.15 26.98 
the absolute value of 

the difference 

self-gravity 0.09 0.15 0.35 0.37 0.32 0.34 0.12 0.07 0.08 

uniform ice 0.76 0.11 0.31 0.25 0.08 0.67 0.26 0.2 0.25 

non-uniform ice 

A 25.31 32.92 38.38 41.69 42.88 41.95 38.94 33.86 26.74 
B 25.25 32.92 38.48 41.85 43.04 42.09 39.01 33.90 26.76 

C 25.06 32.64 38.22 41.75 43.14 42.34 39.35 34.21 26.95 

mean value 25.21 32.83 38.36 41.76 43.02 42.13 39.10
 

33.99 26.82 
Variance 0.016 0.026 0.016 0.006 0.018 0.039 0.049 0.036 0.013 

TABLE 5 The stress of conductor 

  11 21 31 41 51 61 71 81 91 101 

self-gravity analytical value 57.21 56.64 56.23 55.98 55.92 55.98 56.23 56.64 57.21 57.94 

simulation value 57.19 56.62 56.21 55.97 55.93 55.99 56.24 56.67 57.25 57.99 

uniform ice analytical value 88.4 87.46 86.79 86.38 86.25 86.39 86.80 87.48 88.41 89.6 
simulation value 88.47 87.51 86.82 86.40 86.27 86.50 86.98 87.65 88.56 89.67 

the absolute value 

of the difference 

self-gravity 0.015 0.019 0.014 0.009 0.017 0.007 0.012 0.027 0.042 0.05 

uniform ice 0.073 0.047 0.027 0.015 0.017 0.11 0.185 0.172 0.152 0.072 
non-uniform ice A 89.34 88.18 87.43 87.01 86.9 87.07 87.46 88.07 88.85 89.82 

B 91.67 90.68 89.85 89.37 89.25 89.44 89.85 90.47 91.25 92.22 

C 92.61 91.79 91.09 90.62 90.41 90.55 91.0 91.77 92.65 93.74 
mean value 91.21 90.22 89.46 88.99

 
88.85 89.02 89.44 90.1 90.92 91.93 

Variance 2.83 3.41 3.47 3.37 3.19 3.15 3.26 3.51 3.69 3.89 

 

The sag of analytical and simulation value are shown 

in Table 4, the absolute value of difference is very small, 

It illustrates that the finite element method is feasible for 

simulating from-finding of transmission lines. The sags of 

iced transmission lines at all the points are larger than bare 

conductors. It can be seen from that the sag and stress of 

transmission lines changed with different kinds of the non-

uniform ice conditions. Judging from its variance, the 

change of stress at all points is different with different non-

uniform ice conditions, the biggest change appears at both 

ends and the central span of the conductor.  

The deformation diagrams of transmission lines under 

uniform ice and non-uniform ice are shown in Figure 5-8, 

the sag and stress have changed a lot, with the increase of 

elevation difference, the difference of sag and stress 

becomes larger and larger. The allowable stress of 

conductor LGJ – 400/35 is 92.8 Mpa, maximum stress 

does not exceed the allowable stress under uniform ice and 

condition A, B. But to the condition C, the maximum stress 
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of the iced transmission line at the node 101 is larger than 

the allowable stress, which will have risk in the actual 

operation. 

 
FIGURE 5The deformation diagrams of transmission lines under 

uniform ice 

 
FIGURE 6

 
The deformation diagrams of transmission lines under ice 

condition A 

 
FIGURE 7

 
The deformation diagrams of transmission lines under ice 

condition B 

 
FIGURE 8

 
The deformation diagrams of transmission lines under ice 

condition C 

 

6 The form-finding of multi-span transmission lines 

 

6.1 THE MECHANICAL CHARACTERISTICS OF 

MULTI-SPAN TRANSMISSION LINES 

 

Figure 9 shows the multi-span transmission lines, the force 

of point A is shown in Figure 10, it does not consider all 

the friction in the transition zone, it can be obtained the 

following equilibrium equation without considering the 

friction. 

1 2T T . (9) 

In general 
1 2  , therefore: 

1 1 1 2 2 2cos cosH T T H    . 

Applying the nonlinear finite element method to find 

form of transmission lines, the horizontal tension is the 

iterative condition (horizontal tension=the average tension 

stress by the cross-sectional area), for the multi-span 

transmission lines, the horizontal tension is unequal. The 

horizontal tension to each adjacent span can be calculated 

by Equation (9). If the error of horizontal tension is smaller 

than 5%, update the model with smaller numerical value, 

or update with a large numerical value. 

 
FIGURE 9 The multi-span transmission lines 

 
FIGURE 10 The force of point A 

 

6.2 THE EXAMPLE OF FORM-FINDING FOR MULTI-

SPAN TRANSMISSION LINES 

 

With reference to the above model parameters of single 

span transmission line, the model of three consecutive 

transmission lines was set up, in the actual transmission 

lines, the adjacent spans are connected by insulators, so the 

joints of two middle spans are set as hinge constraint, the 

ends of the lines are used fixed constraint, the Y direction 

of degrees of freedom at the joints of two middle spans are 

restrained. Ice conditions of the transmission lines are 

divided into four kinds of working conditions, which is 

shown in the Table 6. The thickness of uniform ice is 20 

mm. The deformation diagrams of transmission lines 

under uniform ice and non-uniform ice are shown in 

Figure 11-14. The distribution of sag has changed a lot 

with uniform and non-uniform ice, the sag increased in the 

condition of 2-3, which make the sag of the adjacent span 

changed, which has a significant impact on the normal 

operation of transmission lines. 

TABLE 6 The ice conditions of three consecutive transmission lines 

1 2 3 4 

all spans first span second span third span 

1
2

3

A

B

T2

T1

θ2 θ1

A
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FIGURE 11 The deformation diagrams of three spans under uniform ice 

 

FIGURE 12 The deformation diagrams of the first spans under uniform 

ice 

 
FIGURE 13 The deformation diagrams of the second spans under 

uniform ice 

 
FIGURE 14 The deformation diagrams of the third spans under uniform 

ice 

7 Conclusion 

 

1) According to the different forms of load on cable 

structure, the form-finding of the cable is researched under 

its own gravity, uniform ice and non-uniform ice load. As 

for the multi-span transmission lines, two conditions of 

uniform ice and non-uniform ice loads on the whole span 

were analysed, which provide premise for the dynamics 

analysis of transmission lines, the accuracy of form-

finding will seriously affect the results of dynamic 

response. 

2) It can be seen that the absolute value of the difference 

between the simulation and the analytical value is very 

small, which shows that application of the finite element 

method to find form of transmission lines is correct and 

feasible. The sags of iced transmission lines at all the 

points are bigger than bare conductors. For the non-

uniform ice conditions of A, B and C, it can be seen from 

that the sag and stress of transmission lines changed with 

different kinds of the non-uniform ice conditions. Judging 

from its variance, the change of stress at all points is 

different with different non-uniform ice conditions, the 

biggest change appears at both ends and the central span 

of the conductor.  

3) The sag and stress have changed a lot between the 

conditions of uniform ice and non-uniform ice, with the 

increase of elevation difference, the difference of the sag 

and stress becomes larger and larger. The allowable stress 

of conductor LGJ – 400/35 is 92.8 Mpa, the maximum of 

the iced transmission line stress does not exceed the 

allowable stress under uniform ice and condition A, B. But 

to the condition C, the maximum stress at the node. 101 

MPa is larger than the allowable stress, which will have 

risk in the actual operation.
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