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Abstract 

With the popularity of baseball, numerous studies have been conducted to find methods to improve performance during a baseball 
match. However, it's still unclear that how the batter should hit a ball so that the batted ball speed is largest. In other words, where is 
the sweet spot that maximum energy is transferred to the ball when it's hit? In our paper, we take three factors into consideration to 
determine position of sweet spot. We build three models to confirm corresponding factors: (1) relationship between batted ball speed 
and distance from hit point to pivot point when the pivot point is fixed, (2) loss of energy caused by vibration of bat, (3) loss of 

energy caused by rotation of bat. At last, by considering the above three models to get the final energy of ball. We find tha t the COP 
(Centre of Percussion) point is just the sweet spot. What's more, by considering variation of mass, centre of mass and moment of 
inertia of bat after corking a bat, we get the new position of COP. Our conclusion is that when a batter does the same work to the two 
types of bat, corking a bat doesn't change batted ball speed dramatically. Therefore, "corking" doesn't enhance performance during 
baseball match even though it may lead to better control of the bat. At last, by statistical processing to results of baseball match in the 
last more than 30 years, we find that the aluminium bat shows a marked increase in hit-ball speeds. So different materials have 
different behaviours during a match. In addition to that, we also give reasons why Major League Baseball prohibits metal bats 
according to our model. 
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1 Introduction 

A commonly accepted fact is that baseball became the one 

of most popular activity all over the world. The most 

important equipment of baseball is ball and bat. The balls 

in the games are same, and then the Competition Results 

mainly depend on the bats which players use. The key 

factor to measure the bat performances is the batted ball 

speed. Then, how to make it? Here, a problem is inevitably 

involved in “the sweet spot of a baseball bat”. But what 

and where is the "sweet spot" on a baseball bat? How to 

locate the sweet spot? 

A lot of researches have been done to explain and find 

the sweet spot. One saying is that a sweet spot is a place, 

often numerical as opposed to physical, where a 

combination of factors suggests a particularly suitable 

solution. In the context of a bat or similar sporting 

instrument, sweet spot is often believed to be the same as 

the centre of percussion [1]. The other saying says that the 

sweet spot in a baseball bat is an impact point, or a narrow 

impact zone, where the shock of the impact, felt by the 

hands, is reduced to such an extent that the batter is almost 

unaware of the collision. At other impact points, the impact 

may be felt as a painful sting or jarring of the hands, 

particularly if the impact occurs at a point well removed 

from the sweet spot [2]. 

Whereas, it is a pity that there is no exact theory to 

explain why this spot is on the fat part of a baseball bat 

rather than the barrel end of it. The first task of our paper is 

to locate the position of sweet spot. 

Of course, some players believe that "corking" a bat 

enhances the "sweet spot" effect, is it right or wrong? 

What's more, does the material out of which the bat is 

constructed matter to the bat performance? 

In order to solve these problems, we divide our work 

into several steps. Our steps are as follows: 

1)  Building model to confirm the relationship between 

batted ball speeds and distance from hit point to pivot 

point when the pivot is fixed. 

2)  Building model to confirm loss of energy caused by 

vibration of bat in the process of impact between bat 

and ball, that is, the maximum energy should be 

transferred to the ball. Moreover, the batter should feel 

least sting during collision. 

3) Building model to determine loss of energy caused by 

rotation of bat in the process of collision between bat 

and ball. 

4)  By a comprehensive analysis, get the preliminary 

conclusion of where should the sweet spot be. 

5)  By augmenting our method, confirm "corking" a bat 

whether enhances the "sweet spot" effect. 

6)  By analysing influential factors of sweet spot, make 

sure whether different materials making up a bat has 

different effects on performance of a baseball match. 
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2 Notations and Assumptions 

2.1 NOTATIONS 

I : Moment of inertia I about the pivot point; 

1 : Angular velocity of bat before impact; 1 

2 : Angular velocity of bat after impact; 

V : Speed of ball before impact; 

2V : Speed of ball after impact; 

r : Distance between pivot point and a random point on 

the bat; 

M : Mass of the ball; 

1M : Mass of the bat; 

l : Distance from the barrel end to the pivot point.  

2.2 ASSUMPTIONS 

1)  Shape of bat is symmetrical, regular and the density of 
wood one is uniform; 

2)  Work done by the batter to the normal bat and the 
corked one is uniform; 

3)  With the corking problem, the node with the zero 
displacement which is gained in the vibration model 
and COP is the same on; 

4)  Loss of energy caused by vibration and offset will be 
negligible when the hit point is the sweet point. 

5)  Loss of energy caused by inelastic collision is identical 
to the normal wood bat and corked one. 

6)  Cork or rubber corked to the bat is a cylinder with the 
uniform density and its centre of mass is in the centre 
shaft of bat. 

3 Locations of sweet spot on a baseball bat 

Trying to locate the exact sweet spot on a baseball bat is 
not as simple a task as it might seem, because there are a 
multitude of factors having effect on selection of position 
of sweet spot on a baseball bat. What we take into conside-
ration includes: (1) distance between hit point and pivot 
point; (2) bat's vibration caused by hitting a ball; (3) bat's 
rotation caused by hitting a ball. 

3.1 STEP ONE OF SOLUTION 

As a sweet spot, there is no doubt that the batted-ball speed 
is relatively high, if not; no one in the normal state will 
choose it as an impact location. When an impact between 
bat and ball happens, no matter the bat is stationary or 
locomotors, there is no doubt that there will be a batted-
ball speed, and the problem is that in which position that 
the batted-ball speed is the largest. Our task is to find that 
position. 

For the bat, we only take torque into account when ana-
lysing the motion of bat. In the transient moment (usually 1 
Ms) of impact between bat and ball, our model decompo-
ses the motion of bat into translational part and rotational 
part about the pivot point. 

When computing, we suppose the translational speed of 
bat is the pivot point is 0. As to the centre of gravity is far 
from the knob end of bat and the mass of the knob end is 
lighter than the barrel end, so this suppose doesn't change 
the kinetic energy of bat dramatically. 

Then by applying the Angular Momentum Conserva-
tion Law, we can get: 

1 2 2I MrV I MrV    . (1) 

We assume energy in this model is also conservative. 
Though there exists loss of energy caused by inelastic 
collision, it is uniform in every point of bat, so it has little 
effect on the location of sweet spot and can be neglected. 
So we can get 

2 2 2 2

1 2 2

1 1 1 1

2 2 2 2
I MV I MV    . (2) 

According to Equations (1) and (2), we can eliminate, 
and then we can acquire: 

 
 

22 2

22 2

1 2 22
M r V V

MV Mr V V MV
I




    . (3) 

As we all know, V is a constant value once an impact 
happens. Thus, the right side of Equation (3) is constant. 
Then, we consider the relationship between 2V  and r . 

Thus, according to Equation (4), we can get 

 
 

22

22 2

1 2 22
Mr V V

V r V V V
I




     (4) 

By computing Equation (4), we can get the relationship 
between 2V  and r . The result is as follows: 

 

2 2 2 2 2
2

2 2

1 2

1

VMr VMr Mr Mr V
r r V rV

I I I I
V

Mr

I

  
      

            
      


 
 

 

. (5) 

In the collision process, it satisfies the condition 

I MVl . So it's easy to get the conclusion that 

 
2 2Mr r l

I Vl V

 
 .  

In general, the relative speed of ball to the bat is equal 
to speed of the barrel end of bat, thus we can acquire that 

1
l

V


 .  
Therefore, it's apparent that 

2 2 2

2 2V r r V rV      . (6) 

Consequently, 2 2V r V  . As we know [3], 

 2 1A ball A batV e V e V   , (7) 

in which batV r , and ballV V . Ae  denotes the 
collision coefficient and it satisfies 1 1Ae   . By 
connecting Equations (6) and (7), we get the conclusion 
that Equation (6) is a special condition in which 1Ae  . 

Our conclusion is that further a point on the bat is apart 
from the pivot point, the larger the batted-ball speed is. 
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3.2 STEP TWO OF SOLUTION 

Whenever an object is struck, it vibrates in response. At one 
point, which is called "the node", the waves always cancel 
each other out, and the batter won't feel any stinging or 
shaking in his or her hands. Since little of the bat's energy is 
lost to vibration when this spot is hit, more can go to the ball. 
Our purpose in this model is to find the special node where 
the loss of energy is the least. Here we apply the experimen-
tal result of Daniel A. Russell PH.D [4]. 

Figure 1 shows the first two bending modes of a freely 
supported baseball bat. The handle end of the bat is at the 
right, and the barrel end is at the left. The numbers on the 
axis represent inches (this data is for a 30 inch Little 
League wood baseball bat). The amplitude of the vibration 
is greatly exaggerated for clarity. When excited by an im-
pact force, such as a baseball striking the bat, all of these 
modes, (as well as some additional higher frequency mo-
des) are excited and the bat vibrates. 

 
FIGURE 1 Mode shapes for 30-inch Little League wood bat 

The fundamental bending mode has two nodes, or 
positions of zero displacement). One is about 6-1/2 inches 
from the barrel end close to the sweet spot of the bat. The 
other at about 24 inches from the barrel end (6 inches from 
the handle) at approximately the location of a right-handed 
hitter's right hand. 

The second bending mode has three nodes, about 4.5 
inches from the barrel end, a second near the middle of the 
bat, and the third at about the location of a right-handed 
hitter's left hand. 

In our model, we prefer to follow the conclusion used 
by Rod Cross who defines the sweet zone as the region 
located between the nodes of the first and second modes of 
vibration (between about 4-7 inches from the barrel end of 
a 30-inch Little League bat). Since the vibrational motion 
of the bat is very small in this region, an impact in this 
region will result in very little vibration of the bat (no stin-
ging a player's hands) and a very solid hit will result with 
maximum energy being given to the ball (Figure 2). 

 

 

FIGURE 2 The sweet zone got from this model 

An impact to the outside (towards the barrel end) or 
inside (towards the handle) of this zone will result in a 
much more significant vibration of the bat, often felt as a 

painful sting. And the ball will not travel as far because 
some of the energy is now being stored (or dissipated) in 
the bat's vibration. 

3.3 STEP THREE OF SOLUTION 

What makes the COP special is that an impact at the COP 
will result in zero net force at the pivot point. Impacts 
closer to the handle will result in a translational force at the 
pivot. Impacts closer to the barrel end will result attempt 
make the bat rotate about its centre-of-mass, causing a 
force in the opposite direction at the pivot point. However, 
for impacts at the COP these two opposite forces are 
balanced, resulting in a zero net force. The COP would 
seem to be a likely candidate for the sweet spot since an 
impact at that location would result in zero force at the 
batter's hands (the top hand is right about 6-inches from the 
knob). However, the COP is not a fixed point on the bat, 
but depends on the location of the pivot point. All current 
methods of testing baseball and softball bat performance 
use the 6-inch point as the pivot point, and thus as the 
reference for locating the COP. 

3.3.1 The normal method 

As definition in textbooks [5], a solid object which 
oscillates about a fixed pivot point is called a physical 
pendulum. When displaced from its equilibrium position 
the force of gravity will attempt to return the object o its 
equilibrium position, while its inertia will cause it to 
overshoot. As a result of this interplay between restoring 
force and inertia the object twill swing back and forth, 
repeating its cyclic motion in a constant amount of time. 
This time, called the period, depends on the mass of the 
twill swing back and forth, repeating its cyclic motion in a 
constant amount of time. This time, called the period, 
depends on the mass of the object 1M , the location of the 
centre-of-mass relative to the pivot point d, the rotational 
inertia of the object about its pivot point I , and the 
gravitational field strength g  according to Equation (1). 

1

2
I

T
M gd

 . (8) 

Instead of being distributed throughout the entire 
object, let the mass of the physical pendulum 1M  be con-
centrated at a single point located at a distance L  from the 
pivot point. As we all know from textbooks, the period of 
single pendulum is 

2
l

T
g

 . (9) 

This point mass swinging from the end of a string is 
now a "simple" pendulum, and its period would be the 
same as that of the original physical pendulum. According 
to Equations (1) and (2), we can get 

1

I
L

M d
 . (10) 
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3.3.2 The advanced method 

As we all know, if impact happens in the position of CM 
(Centre of Mass), the batter's hands will feel force after 
bat's translational motion. If a batter's hands don't feel 
force, then torque caused by hitting a ball balances the 
translational force. As the next step, we will introduce our 
advanced method to get the equation from which the 
location of COP can be computed. 

Here, we assume the average force during a  collision 
process is f , and the translational acceleration of bat is 

1

f
a

M
 . 

In this method, we assume the direction of a point at 
the left side. When consider rotation of bat, we regard the 
CM as the axis point. Then the moment of inertia of bat 
after impact is 2

1 1I I M d  , and I  denotes the moment 
of inertia of bat before impact. According to the theorem of 
angular momentum, we can get 

1f r I    ( a  denotes 
the angular acceleration and r  denotes distance between 
hit point and CM). At this moment, the acceleration of 
pivot point is 1a d , and the direction of 1a  points at 
the right side. 

If one can't feel force, then 1a a , that is 

1

1 1

frf
d

M I
  . (11) 

As a consequence, we can get 

 2

1 1

1

1
r I M d

M d
  . (12) 

Therefore, the value of L  is 

1

1

I
L r d

M d
   . (13) 

From the above analysis and derivation, we also obtain 
the same value of L  as the normal model. Advance is that 
the gained result is under the condition of regarding the 
acceleration about the pivot point as zero instead of con-
sidering the collision period, T . 

3.3.3 Calculation of both methods 

This location L  is known as the "centre-of-oscillation", 

since it represents the length of an equivalent simple 
pendulum with the same total mass and that has the same 

period as the actually physical object. The exact location 

of this special point depends on the location of the pivot - 

a fact which will be very important to the application of 

this concept to a baseball bat, as we will see below. 

Then the following problem is how to make sure the 

location of CM (Centre of Mass). As the next step, we'll 

confirm the location of CM. 

In order to make sure CM, we apply an axis named x 

which is shown in Figure 3. 

 

FIGURE 3 Bat in an axis named x 

As we assume that the shape of bat is symmetrical and 
that the density ( )  of bat is uniform, so we can make a 
conclusion empirically that the CM location is in the axis. 
Then we can acquire the position of CM (we apply the 
notation 

cX  to denote it) through the following Equation: 
1

0

1 1

M

i i

c

xdm
m x

X
M M

 


. (14) 

In our model, dm  can be simplified as 

 

2

1

2

2

2

2 1

1

0

,

x

x

r dx

dm r dx

r dx

x a

r r
a x b r r x a

b a

b x c










 



 


    



 

. (15) 

Here, we assume the phase from 0 position to a  posi-

tion is a cylinder, and its radius is 1r ; the phase from a  

position to b  position is xr ; the phase from b  to c  is 2r . 

Thus, we can confirm the position of CM, that is, we can 

acquire the value of d . 

The next step is to make sure the value of I , and I

can be expressed as: 
1

2 2

0

M

i i iI m r r dm    ( ir denotes 

radius of bat in a point with value in axis is i ). Thus, we 

can compute the value of I . 

After we have known the value of I , d  and 1M , the 

value of L  is very apparent. Therefore, the position of 

COP is acquired. 

3.3.4 Further talk about this model 

As shown in our advanced method, we can get the 
conclusion that the composite force exerted to the pivot 
point can be expressed as 

1 2

1

1c

r d
f f M

I M d

  
  

 
. (16) 

We have to know acceptance range if we want to com-
pute energy delivered to batter's hands. As the acceptance 
range of the pivot point caused by vibration in batter's 
hands is relatively small, the loss of energy is 

1

1 12

1

1c

M rd
E f l f l

I M d

 
   

 
. (17) 

In the previous equation, f  is determined by the initial 
and final speed of ball and 1l  denotes moving distance of 
bat in a batter's hands. That's to say, it's related to the 
batting effect. Yet, because the discrepancy got from the 
batting effect is relatively small, we can assume the value 
of f  is constant. Then, there is a significant linear correla-
tion between E  and r . That's to say; the farther a point 
on a bat is apart from the CM, the larger loss of energy. In 
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our real life, batter's hands may exert larger forces, the true 
loss of energy may less than E . But if hands' force is not 
large, the effect of E  can't be negligible. 

3.4 PRELIMINARY CONCLUSION 

By taking batted-ball speed, COP and vibration node into 
consideration, we can get the final kinetic energy of ball 
after impact. Then we have to find the location in which 
the ball can get the largest final kinetic energy. And this 
position is the sweet spot. 

As shown in vibration model and COP model, we can 
get the conclusion that the loss of energy satisfies the same 
principle. Thus, we can assume the coefficient of loss of 
energy is  1   . As a whole, the final kinetic energy of 
ball is 

2 1

1 2 12

1

1
1

2

M rd
E MV f l

I M d


 
    

 
. (18) 

As shown in Equation (6), we get, 2 2V r V   

2 2V r V   in maximum batted-ball speed model and 

here we assume V r  as the hitting ball zone is small 

compared with the length of bat and it is far from the pivot 

point. So the variation of r  is small.  

Then we get 2V r  . We can also know from Fig. 2 

that r r d   . Then the above equation can be transfer-

red into 

2 2 2 1 1

1 2

1

1

2

fl M d
E M r r C

I M d


    


. (19) 

In the above equation, C  is a constant value. As we 
can see, 1E  is a parabola about r , and it has the smallest 
value in the point where r  satisfies 

  
1 1

2 2 2

1

fl M d
r

I M d M



 


 . (20) 

As the value of f  is large, if we substitute values of 
every parameter, we find that it's easy to get the conclusion 
that 

  
1 1

2 2 2

11

f M dl
l

M d M



 


 . (21) 

As a result, as the coefficient of 
2r  is positive, so when 

  
1

2 2 2

1

fl M d
r

I M d M



 



 1E  is smaller and smaller on 

the left side of parabola with the increment of r . As COP 

is the smallest one, thus the point in which the ball can get 

the largest kinetic energy is the COP point. That is also the 
sweet spot which is just not at the end of the bat, but on the 

fat part of a baseball bat. 

4 The Corking problem 

Some players believe that "corking" a bat enhances the 

sweet spot effect. The reason why they think so may be 

based on the theory that it's much easier to swing some-

thing when the weight is concentrated closer to one's hands 

than when it's concentrated far from one's hands which 

they get from experience. The goal of our next step is to 

prove whether corking enhances sweet effect or improve 

performance in a baseball match. 
If we hollow out a cylinder in the head of the bat, fill it 

with cork or rubber, and replace a wood cap, then it's a 
corked bat. 

4.1 THE PROCESS OF ANALYSIS 

Here, we assume the density difference between bat and 
cork or rubber (whose density is less than bat) is  ; the 
radius of filling material is 

3r ; the depth of filling material 
is h . By the same way, we assume the decreasing mass of 
bat is m . We also assume the initial mass of bat is 

1M . 
Then the CM position of bat can be indicated as 

1

1

0 0

1 2

1 3

M m

c

xdm xdm

x
M r h








 
. (22) 

In the above Equation, 2

1 3dm r dx   and the mass 

of corking bat can be expressed as 2

1 3M r h . With 

the same method, we can get the location of new CM 

which we use 1d  to indicate. 

What's more, we can get new moment of inertia 1I  of 

bat about the pivot point with the same method. As a 

result, we can get the new position of COP with the 

Equation 

 
1

2

1 3 1

I
L

M r h d



. (23) 

4.2 THE CALCULATION PROCESS 

By calculation, we find that after corking a bat, the mass of 
bat is less; moment of inertia decreases; the position of CM 
is closer to the handle end of bat. Thus, when a batter swings 
a bat, the speed of bat is larger than before. However, the 
resistance force exerted by air (which is in proportion to the 
square of speed of bat) is larger at the same time. 

We assume work done by the batter to the bat is uni-
form because work has done by a batter equal multiplying 
force by distance. Under both circumstances, no matter 
force or distance is uniform. Thus we can get 

2 2

1 1 3
1 1
2 2

I I  , (24) 

in which 3  represents the angular velocity after corking a 
bat. We get the result that 

 
1

3 32

1 3 1

I
r

M r h d
 


 

 . (25) 

As we get from Equation (1) 

 
 

22

2 2

1 3 1 1 3
2

l l h
M r h d M d r 

 
    . (26) 

Equation (2) indicates that 
3 1

1

I

I
   , so when 

 2

1 3 1M r h d  reduce, 3  increases respectively. So 

the value of 3r  doesn't change very much. 
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We also assume that the node with the zero displace-
ment which is gained in the vibration model and COP is 
the same one. Then loss of energy caused by vibration and 
offset will be negligible when the hit point is the sweet 
point. Loss of energy caused by inelastic collision is uni-
form for the reason that though the speed of bat is larger, 
the increment can be negligible. 

As shown in the maximum batted-ball speed model, 
energy got by the ball is concerned with value of 

3r , and 
the value of 

3  can be gained through Equation (2). And 
r L , in which L  has been known before. By computing, 
we find that after corking a bat, the final speed of ball 
doesn't change dramatically. The graph is as follows. 

Relative to the normal bat, the corked bat had a cavity 
in the barrel end of diameter 0.875” and depth 9.25”. The 
computation assumes that the ball-bat COR is the same for 
each bat, as shown from experiment, and assumes a parti-
cular relationship between the bat swing speed and the 
moment of inertia of the bat. The computation shows that 
the corked bat is not superior to the normal bat in batted-
ball speed. 

Conclusion: By computing, we can get the conclusion 
that after corking a bat, the sweet spot effect doesn't 
improve. As we know, the efficiency of the bat in trans-
ferring energy to the ball is in part depends on the weight 
of the part of the bat near the impact point of the ball. For a 
given bat speed, a heavier bat will produce a higher hit ball 
speed than a lighter one. By reducing the weight of bat 
which can be done by corking a bat in the barrel end pro-
duces a less effective collision [6]. 

4.3 REASONS FOR PROHIBITING “CORKING” 

Firstly, by drilling out the centre of a wood bat and repla-
cing it with cork, the mass of bat is lighter. More impor-
tantly, the location of the centre-of-mass of the bat would 
shift slightly towards the handle end of the bat. This means 
that the moment of inertia of the bat would decrease and it 
would be easier to swing, which increases the better 
control of the bat. 

Secondly, according to Newton's second law, under the 
condition of constant force applied to the ball when impact 
happens, the mass of bat is lower, and then the acceleration 
of bat will increase, only to lead in shortening the time of 
swing, thus allowing the batter to react to the pitch more 
quickly. So corking a bat in a baseball game will reduce gre-
atly the technique and specialty of the professional players. 

5 Analyses of different materials 

The above models we have built is based on the baseball 
bat made of wood, which has well solved the previous two 
problems. To the final issue, we have to take other material 
(usually aluminium) into account in order to verify our 
model and analyse the effect of different materials on the 
model. Given the amount of controversy over the metal 
versus wood bat issue, there have been surprisingly few 
scientific studies comparing the performance of wood and 
metal baseball bats. There is one paper from 1977, when 
aluminium bats were just beginning to assert their promi-
nence, which concluded that the batted ball speed of an 
aluminium baseball bat was about 3.85 mph faster than a 
wood baseball bat [7]. A second phase of the study attemp-
ted to explain the increase in performance of the alumi-
nium bat by comparing the size of the "sweet spot" for the 

two bats by locating the COP. The study found that the 
aluminium bat appeared to have a larger COP than the 
wood bat. In contrast to the 1977 study, a 1989 study 
concluded that metal bats did not outperform wood bats 
[8]. Then, now what confuses us is whether the material of 
bat is a matter. 

In our opinion, if the constructed material of bat is dif-
ferent, the bat performance factors making a difference on 
the bat are also greatly different. We will analyse and con-
firm our view from the following three aspects. 

5.1 PERFORMANCE OF ALUMINIUM BATS 

We get statistics published by the NCAA for Division I 
college baseball starting from the year 1970 through this 
year. The raw data includes yearly results for batting ave-
rages, home runs per game, runs scored per game, strike-
outs per 9 innings, pitcher earned-run-averages, stolen 
bases and fielding percentages [9]. Here we only concern 
batting averages, home runs per game. 

We get performance of aluminium bats from 1970 to 
2006 by citing the experimental results of Daniel A. 
Russell PH.D. Figure 4 and Figure 5 show batting average 
and home runs per game. Note: there are three important 
data points to be paid attention to. First, 1974 was the year 
aluminium bats were introduced to NCAA college base-
ball, and metal bats have been used almost exclusively 
since that year. Secondly, in 1986 the NCAA imposed a 
lower limit on the weight of a bat. Finally in 1999, after the 
1998 season – during which a number of scoring records 
were broken – the NCAA implemented a performance 
standard to limit the performance of aluminium and com-
posite bats. Here we only make a main discussion from 
1974 to 1986. 

 

FIGURE 4 Batting average 

 

FIGURE 5 Home Runs per Game  

The two plots at above which show the mean batting 
average and home runs per game for all NCAA Division I 
college baseball players as a function of year from 1970 
through 2006 [10]. The two data have the same trends. 
Note that from 1970 through 1974 there appears to be an 
almost steady increase in both. After players using alumi-
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nium bats make solid contact with the ball more often than 
former players did with wood bats. During the same time 
period, batting averages were quickly increasing, so pit-
chers had increasing difficulty to strike batters out [11]. 
One thing is true: Aluminium bats typically have lower 
moment of inertia than wood ones and therefore may be 
swung more quickly. As a result, the hit-ball will have hig-
her speed and fly faster and further. 

From this we see aluminium bats outperform wood 
bats in games, in despite of performance standard to limit 
the performance of aluminium and composite bats. 

5.2 REASONS FOR PROHIBITING METAL BATS 

On the basis of previous analyses, we find the reasons why 
Major League Baseball prohibits metal bats. They are as 
follows: 

Firstly, baseball rules require that the bats used in pro-
fessional baseball be constructed of wood, whereas ama-
teur players can use aluminium bats. Players agree that the 
aluminium bats drive the ball much faster; the balls come 
off the aluminium bat with more velocity. Overall, the use 

of aluminium bats could be expected to double the number 
of home runs hit during a season. And that would change 
the balance of the game too much, reducing the observa-
bility of professional baseball, so rules limit the pro-
fessional players only use wood bats. 

Secondly, the controversial issue at hand is the claim 
that aluminium bats are inherently more dangerous than 
wood bats; despite that it has the following advantages: 
lighter in weight, not prone to crack or break, higher batted 
ball speed. 

Finally, according to the baseball regulations made by 
NCAA, the field safety determines to prohibit the use of 
aluminium bat. It is the greatest advantage that higher hit-
ball speed puts pitchers and infielders at higher risk for 
injury that has led to calls for restrictions on bat perfor-
mance. 
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