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Abstract 

Local reconstruction and global preserving based semi-supervised dimensionality reduction (LRGPSSDR) algorithm gives no 

consideration to data locality when processing intra-class relationship and class relationship. Enhanced semi-supervised local fisher 

discriminant analysis algorithm (ESELF) also neglects locality of data manifold structure when maintaining data manifold structure. 

To address these problems, the local reconstruction and local fisher discriminant based semi-supervised dimensionality reduction 

(LRLFSDR) algorithm was proposed in this paper. It depicts significance of sample distance with an improved thermonuclear weight. 

In this way, intra-class relationship and class relationship of the same cluster attracts more attentions, thus enabling to shorten or widen 

intra-class distance or class distance firstly. Moreover, it uses idea of LLE algorithm to make neighbourhood linear reconstruction 

relationship of each point in low-dimensional space to be similar with that in high-dimensional space, which takes locality of data 

manifold structure into account. Test result confirmed that the proposed LRLFSDR algorithm is superior to other semi-supervised 

dimensionality reduction algorithms in classifying standard libraries like COIL20, Extended YaleB and CMU PIE. 

Keywords: local fisher discriminant, local reconstruction, semi-supervised learning, dimensionality reduction 

 

1 Introduction  

 

“Curse of dimensionality” caused by “small data sample 

but high dimensionality” is a common problem in machine 

learning, data mining and pattern recognition. 

Dimensionality reduction is an effective solution to the 

“curse of dimensionality” [1-3]. It includes supervised 

dimensionality reduction and unsupervised dimensionality 

reduction according to whether training data provides 

dimensionality reduction algorithm on label. Supervised 

dimensionality reduction algorithm can make full use of 

data category structure to apply dimensionality reduced 

data better in data classification. Linear discriminant 

analysis (LDA) [4] is a typical supervised dimensionality 

reduction algorithm. Unsupervised dimensionality 

reduction algorithm reduces data dimensionality mainly 

based on data manifold structure or sample relationship. It 

is mainly used as pre-processing of clustering or 

supervised dimensionality reduction algorithm. Principal 

component analysis (PCA) [4] and local linear embedding 

(LLE) [5] are typical unsupervised dimensionality 

reduction algorithms. 

In most practical application cases (e.g. face 

recognition and speaker recognition), supervised 

dimensionality reduction algorithm requires many labelled 

samples, which is very difficult. On the contrary, it is very 

easy to acquire unlabelled samples. Under this background, 

many scholars began to study how to use unlabelled 

samples to increase effect of supervised dimensionality 
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reduction algorithm, such as semi-supervised discriminant 

analysis (SDA) [6] and LRGPSSDA [8]. 

Advantages and disadvantages of these algorithms are: 

1) SDA [6] can embody discriminant information in 

labelled samples and maintain manifold structure of all 

samples. However, it is sensitive to neighbourhood 

parameter setting and limits dimensions of the projection 

subspace within sample categories. 

2) LRGPSSDA [8] has advantages of SDA and 

overcomes two disadvantages of SDA. It moves faraway 

sample points farther so that dimensions of the projection 

subspace are not limited within sample categories 

basically. However, this is not overcome completely 

because faraway samples are less significant to 

classification result in many classification algorithms. 

3) LRGPSSDR [7] has advantages of SSDR and 

overcomes some disadvantages of SSDR. However, it uses 

global covariance structure to describe negative and 

positive constraints, but neglects local structure. To 

address these problems, LRLFSDR algorithm was 

proposed in this paper. Improved from ESELF and 

LRGPSSDR, it has two advantages. Firstly, LRLFSDR 

algorithm requires neighbour linear reconstruction 

relationship of each point in low-dimensional space to be 

similar with that in high-dimensional space to maintain 

data manifold structure. Different from ESELF, it takes 

locality of data manifold structure into account. Secondly, 

LRLFSDR algorithm uses weighted covariance matrix 

instead of intra-class scattering matrix, thus promising 
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high effect on objective function optimization even under 

small intra-class sample size. This is different from 

LRGPSSDR algorithm. 

 

2 Related algorithms 

 

The general form of semi-supervised dimensionality 

reduction algorithm is given in this section because 

LRLFSDR algorithm is a semi-supervised dimensionality 

reduction algorithm. Later, two related algorithms related 

to the LRLFSDR algorithm are introduced briefly: 

LRGPSSDR and ESELF. 

 

2.1 GENERAL FORM OF SUPERVISED 

DIMENSIONLITY REDUCTION ALGORITHM 

 

Most of existing semi-supervised dimensionality reduction 

algorithms can be depicted by the following general 

mathematical description. Given n labelled samples 

 1 2, ,... m

nx x x R  and their labels  1 2, ,... nl l l  as well as p 

unlabelled samples  1 2, ,... m

px x x R , semi-supervised 

dimensionality reduction algorithm implements mapping 

of    m dX R X R   , d m  using labelled 

samples and unlabelled samples. To achieve mapping, 

most of existing semi-supervised dimensionality reduction 

algorithms have the following or similar objective function 

[1-3, 6-8]: 

* arg max
T

T T

W SbW
W

W SwW W SmW



, (1) 

where W is the mapping matrix of data from high-

dimensional space to low-dimensional space. TW SbW is 

to make data points of different classes in the low-

dimensional space as far as possible. TW SwW  is to make 

data points of same data class in the low-dimensional space 

as close as possible. TW SmW  is to make data points close 

to each other in high-dimensional space still close to each 

other in low-dimensional space. Different semi-supervised 

dimensionality reduction algorithms have different 

definitions to above three items or add some new items in 

Equation (1). 

 

2.2 LRGPSSDR ALGORITHM 

 

The objective function of LRGPSSDR algorithm [7] is: 

* 1

1
2

arg max
T

T T

T T
W W

W SbW W SfW
W

W SwW W SmW









, (2) 

where 
TW SfW  is to make data points away from each 

other in high-dimensional space still far away from each 

other in low-dimensional space. Rest items are for similar 

purpose with those in Equation (1). To be more specific: 

 
2

i j

T T T

i j

l l

W SbW W x W x


  , (3) 

 
2

i j

T T T

i j

l l

W SwW W x W x


  , (4) 

 
2

( ) ( )i j i j

T T T

i j

x N x and x N x

W SfW W x W x
 

  , (5) 

where ( )iN x  is the domain of 
ix . It can be known from 

Equations (3)-(5) that TW SbW , 
TW SwW  and TW SfW  

are the distance sum of different point sets in low-

dimensional space. Then, TW SmW  can be defined as: 

 
2

( ) ( )i j i j

T T T

i j

x N x and x N x

W SmW W x W x
 

  , (6) 

However, LRGPSSDR algorithm [7] doesn’t use 

Equation (6). This is because Wei Jia stated in Reference 

[7] that in LLE algorithm [5], Roweis et al. assume that the 

neighbourhood of input space is locally linear. In other 

words, each point in high-dimensional space can be 

reconstructed through linear combination of the points in 

its neighbourhood and requires similar linear 

reconstruction relationship in low-dimensional space. 

Under this hypothesis, LLE algorithm achieved satisfying 

test result. As a result, Wei Jia [7] redefined TW SmW  

based on this hypothesis: 

T T TW SmW W XMX W , (7) 

where ( ) ( )TM I A I A   . A can be calculated from: 

1 : ( )
( )

j i
i ij jj x N x

i

A x A x


   . (8) 

If 
: ( )

1
j i

ijj x N x
A


 , the linear relationship between 

local neighbourhoods (A) can be calculated by least square 

method. 

Based on difference among Equations (3)-(5) and (7), 

it fails to achieve good dimensionality reduction effect by 

defining items in Equation (2) with distance sum of 

different point sets in low-dimensional space. Equations 

(3)-(6) reflect that distances between samples are equally 

significant. This will cause evident shortcomings in many 

cases. 

1) For class scattering matrix in low-dimensional space 

defined by maximum Equation (3), further increase of the 

distance between two faraway samples is less significant 

to classification. 

2) For intra-class scattering matrix in low-dimensional 

space defined by minimum Equation (4), further decrease 

of the distance between two faraway samples is also less 

significant to classification. When data of same class has 

many distribution intervals in high-dimensional space, 

decreasing distance between these data in low-dimensional 

space will affect optimization of Equation (2) significantly, 

thus making the mapping matrix not always beneficial to 
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classification. Similar disadvantages exist in Equations (5) 

and (6). 

The LRGPSSDR algorithm still has most of 

abovementioned disadvantages although it has overcome 

some by using Equation (7) instead of Equation (6), most 

are remained. 

 

2.3ESELF ALGORTHM 

 

ESELF noticed that distances between different samples 

shall be given with different weights, which can overcome 

some disadvantages of LRGPSSDR algorithm. A brief 

introduction of ESELF algorithm is made in this section. 

Similarly, the objective function of ESELF algorithm is 

given: 

*

1

arg max
T

T T

T
W W

W SbW W SwW
W

W StW


 . (9) 

Reference demonstrates that TW SbW  in (9) is to 

maximize distance between data points of different classes 

within certain high-dimensional neighbourhood in low-

dimensional distance. TW SwW  is to minimize distance 

between data points of same class within certain high-

dimensional neighbourhood in low-dimensional distance. 
TW StW  is to make relationships of data points in low-

dimensional space similar with those in high-dimensional 

space. To be more specific: 

2( )
i j

T T T b

i j ij

l l

W SbW W x W x S


  , (10) 

2( )
i j

T T T w

i j ij

l l

W SwW W x W x S


  , (11) 

2( )T T T

i jW StW W x W x  , (12) 

where 
b

ijS  and 
w

ijS  in Equations (10) and (11) are weight 

of relationship between i and j. Generally speaking, the 

further the i and j are, the smaller the 
b

ijS  and 
w

ijS  will be. 

Equations (10) and (11) give certain consideration to data 

locality when defining TW SbW  and TW SmW . However, 

ESELF algorithm still neglects locality of data manifold 

structure and its data manifold structure in high-

dimensional space goes against local linear data. 

 

3 LRLFSDR algorithm 

 

This section introduces the proposed LRLFSDR algorithm 

which can overcome disadvantages of both ESELF and 

LRGPSSDR algorithms. 

 

3.1 OBJECTIVE FUNCTION 

 

Objective function of the proposed LRLFSDR algorithm 

is: 

*

1
2

arg max
T

T

T T
W W

W SbW
W

W StW W SmW




, (13) 

where TW SbW  is defined in (10) and TW SmW  is defined 

in (7). TW StW  is defined as: 

 
2

T T T t

i j ijW StW W x W x s  , (14) 

where 
t

ij ijs B  and, 

2

2 2

( , )
exp

i j

ij

i j

d x x
B

 

 
  

 
 

, (15) 

where 
i  and j  are distances from xi and xj to their kc 

neighbouring samples. Different from SELF algorithm, the 

proposed LRLFSDR algorithm defines 
b

ijS  in (10) as: 

,

0,

i jijb

ij

B if l l
S

others

 
 


. (16) 

 

3.2 THEORETICAL BASIS 

 

a) Equation (13) uses TW StW  instead of TW SwW  in 

Equation (2). This is because TW SwW  influences 

denominator less when there are few intra-class training 

samples. To overcome disadvantages of TW SbW  is added 

to both numerator and denominator of Equation (1) [6]: 

*

1

arg max
T

T T

T T T
W W

W SbW W SbW
W

W SwW W SbW W SmW




 
. (17) 

Equation (17) can be simplified into Equation (13). 

Therefore, when the numerator is TW SbW , TW SwW  can 

be minimized by minimizing TW StW . 

b) Numerator of Equation (13) involves no 
TW SfW . This 

is because TW SbW  and TW SfW  which represent sample 

distance repeat for many times when there’s a small intra-

class sample size. When there are abundant intra-class 

samples, 
TW SfW  may have to be far away from the 

sample which belongs to the sample class but is beyond 

one point domain. This disagrees with the objective of 
TW StW . 

c) Equation (13) keeps data manifold structure by using 

Equation (7), which can overcome two disadvantages of 

ESELF algorithm, which uses covariance of all samples to 

keep data manifold structure. 

d) Advantages of TW StW  and TW SbW  definitions in the 

proposed LRLFSDR algorithm are analysed. Weight of 

samples ijB  has various definitions [6-8] 

1ijB  , (18) 
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2 ( , )
exp

i j

ij

d x x
B



 
  

 
 

. (19) 

Equation (18) is 0-1 weight, while Equation (19) is 

thermonuclear weight and   is the variance of 

thermonuclear. 

If ijB  adopts 0-1 weight, Equation (10) is equal to (4). 

In other words, ijB  in LRGPSSDR algorithm uses 0-1 

weight, which is the cause of its disadvantages according 

to analysis in Section 2.2. 

SDA algorithm can represent sample relationship with 

thermonuclear weight defined in Equation (19). However, 

thermonuclear weight has to set  . Each dataset has only 

one  , which is inadequate to describe all sample 

relationships in a dataset because many datasets have 

different data distribution patterns in different 

neighbourhoods. 

To address this problem, Lihi Zelnik-Mano represent 

sample relationship by using Equation (15). It doesn’t need 

to preset parameters and has two advantages. Firstly, 

weight of sample relationship changes with data 

distribution. Secondly, data clustering structure is more 

obvious. When calculating TW StW  and TW SbW  

through such weight of sample relationship, priori 

attention will be paid to increase distance of samples 

belonging to different classes of same cluster during 

optimizing Equation (13). Moreover, attention also will be 

paid to distance between samples belonging to sample 

class in same cluster. As a result, samples of same class 

can form clusters in low-dimensional space rather than 

accumulate all samples together when optimizing 

Equation (13), thus making Equation (13) more conducive 

to data classification. The proposed LRLFSDR algorithm 

can overcome disadvantages of LRGPSSDR algorithm in 

Section 2.2. 

Based on previous analysis, we can conclude that 
TW SbW  in Equation (13) is mainly to maximize distance 

of data points belonging to different classes within certain 

high-dimensional cluster in low-dimensional space. 
TW StW  is mainly to minimize distance of data points 

belonging to different classes within certain high-

dimensional cluster in low-dimensional space. TW SmW  

is mainly to maintain the local linearity in high-

dimensional space to low-dimensional space. Additionally, 

weights of sample relationship within certain cluster in 
TW StW  and TW SbW  are set zero, which maintains a 

stable global data structure. Apparently, objective of the 

proposed LRLFSDR algorithm is different from that of 

LRGPSSDR and ESELF algorithms. It overcomes 

disadvantages of both LRGPSSDR and ESELF algorithms. 

 

3.3 OPTIMIZATION OF OBJECTIVE FUNCTION 

 

Optimization of Equation (13) is a generalized rayleigh 

quotient problem. If 2t mS S  is non-singular, solution of 

Equation (13) is the eigenvector corresponding to the 

maximum generalized eigenvalue of Equation (20): 

2( )b t mS w S S w   . (20) 

According to Equation (7), 

TSm XMX . (21) 

Then 
bS and 

tS can be calculated from Equations (10) and 

(14). For Equation (10), 

 

 

2

2 2

2 2 ,

, .

i j

T T T b

i j ij

l l

T b T b

i ii i j ij j

i ij

T b b T T b T

b b b b b

ii ij

j

W SbW W x W x S

W x D xW W x D x W

W X D S X W W XL X W

D S L D S



  

 

 

  



 



 (22) 

bS  can be calculated: 

b b TS XL X . (23) 

For Equation (14), 

 
2

2 ,

, .

T T T b T t T

i j ij

t t t t t

ii ij

j

W StW W x W x S W XL X W

D S L D S

  

  




. (24) 

St can be calculated: 

t t TS XL X . (25) 

Therefore, steps of the proposed LRLFSDR algorithm 

can be concluded: 

Algorithm 1 LRLFSDR: 

Input: n labelled samples  1 2, ,... m

nx x x R  and their 

labels  1 2, ,... nl l l , p unlabelled samples 

 1 2, ,... m

px x x R , neighbourhood parameter 
mk  of 

Equation (8), and neighbourhood parameter 
ck  of 

equation (15). 

Output: Mapping matrix W. 

Calculate weight of sample relationship (B) from 

equation (15). 

Calculate 
mS , 

bS  and 
tS from Equations (21), (23) 

and (25). 

Calculate eigenvalues and eigenvectors in Equation 

(20) and rank eigenvectors from high eigenvalue to small. 

Then, the mapping matrix W can be gained. 

 

4 Simulation experiment 

 

Data classification is the main goal of supervised or semi-

supervised dimensionality reduction algorithm. In this part, 

several classification experiments will be conducted to 

verify the effectiveness of the proposed LRLFSDR 

algorithm. All experiments use 1-NN classifier. The 
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proposed LRLFSDR algorithm is compared with SDA [6], 

PCA [4], LDA [4], LRGPSSDR [7] and ESELF algorithms. 

Only SDA, LRGPSSDR and the proposed LRLFSDR 

algorithms have to set parameters. The SDA algorithm can 

jump over parameter setting by using Equation (15) to 

represent weight of sample relationship. LRGPSSDR 

algorithm applies parameters recommended by Reference 

[7]: 
1 2 0.1   , 1mk   (the neighbourhood parameter 

of Equation (8)) and 5fk   (the neighbourhood 

parameter of Equation (5)). Parameters of the proposed 

LRLFSDR algorithm include 
2 0.1  , 1mk   and 

5ck  . 

 

4.1 EXPERIMENTAL DATASET 

 

Three actual datasets are used in this paper. 

1) COIL20 image library. It includes 20 objects and 

each object has 72 images, totally 1,440 images. These 

images are zoomed into 32×32 in this paper. Therefore, the 

data dimension is 1024. 

2) Extended YaleB. It is a face dataset, including 

38*64 256-gray images with different illuminations. Each 

image is cut into 32×32. 

3) CMU PIE. It is also a face dataset, including 41,368 

face images of 68 persons. These images are collected 

under different postures, illuminations and expressions. 

Each image is cut into 32×32 and identified as 256-gray 

image. 
 

4.2 EXPERIMENT SETTINGS 

 

The experiment uses three algorithms, namely, 

unsupervised dimensionality reduction algorithm (e.g. 

PCA), supervised dimensionality reduction algorithm (e.g. 

LDA) and semi-supervised dimensionality reduction 

algorithm (e.g. SDA, LRGPSSDR, ESELF and the 

proposed LRLFSDR). 

During the training process, unsupervised and semi-

supervised dimensionality reduction algorithms can use 

both labelled and unlabelled training samples, while 

supervised dimensionality reduction algorithms can only 

use labelled ones. n labelled training samples and 

unlabelled training samples are selected randomly from 

each class for each experiment (Table 1). To analyse effect 

of the amount of unlabelled samples on the proposed 

LRLFSDR algorithm and other semi-supervised 

dimensionality reduction algorithms, experiments 1-3 

have same amount of labelled samples, but their unlabelled 

samples increase successively. Experiments 4-6 have more 

labelled samples in order to discuss effect of the amount of 

labelled samples on the proposed LRLFSDR algorithm 

and other semi-supervised dimensionality reduction 

algorithms. Moreover, the amount of unlabelled samples 

in experiments 4-6 also changes to maintain same 

proportion of unlabelled samples with that in experiments 

1-3. Each experiment is repeated for 50 times, taking the 

mean as the final result.  

TABLE 1 Amount of labelled and unlabelled samples in different experiments 

n Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 

nl 5 5 5 10 10 10 

nul 3 6 9 5 15 20 

4.3 CLASSIFICATION RESULT 

 

Classification result is represented by accuracy in this 

paper [7]. The calculation formula of accuracy is: 

#( _ _ )

#( _ )

ecorrectly recognized recordings
precision

all recognized recordings
 . (26) 

Classification accuracies of Experiments 1-3 under 

different dimensions are shown in Figure 1. Maximum 

classification accuracies under different dimensions are 

listed in Table 2. Figure 1a is Experiment 1’s classification 

accuracy of COIL20 dataset. Figure 1b is Experiment 2 

classification accuracy of COIL20 dataset. Figure 1c is 

Experiment 3 classification accuracy of COIL20 dataset. 

Figure 1d is Experiment 1 classification accuracy of CMU 

PIE dataset. Figure 1e is Experiment 2 classification 

accuracy of CMU PIE dataset. Figure 1f is Experiment 3 

classification accuracy of CMU PIE dataset. Figure 1g is 

Experiment 1’s classification accuracy of Extended YaleB 

dataset. Figure 1h is Experiment 2 classification accuracy 

of Extended Yale B dataset. Figure 1i is Experiment 3 

classification accuracy of Extended Yale B dataset. 

Experimental results reveal that the proposed 

LRLFSDR algorithm achieves better classification 

accuracy of all datasets compared to other algorithms. This 

proves effectiveness of the proposed LRLFSDR algorithm. 

Based on analysis of Experiments 1-3, the proposed 

LRLFSDR algorithm and LRGPSSDR algorithm improve 

the semi-supervised dimensionality reduction effect 

significantly by using certain unlabelled samples. 

However, when there are more unlabelled samples than 

labelled ones, further increase of unlabelled samples will 

greatly lower the classification accuracy of semi-

supervised dimensionality reduction algorithms. Hence, 

the proposed LRLFSDR algorithm and LRGPSSDR 

algorithm shall choose reasonable amount of unlabelled 

samples. Moreover, the proposed LRLFSDR algorithm 

can achieve stable recognition rate at lower dimensions 

than other algorithms. This indicates that the proposed 

LRLFSDR algorithm can provide classifier lower-

dimensional features, which can accelerate operation of 

the classifier significantly. 
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FIGURE 1 Experiments 1-3 classification accuracies of three datasets under different dimensions 

TABLE 2 Experiments 1-3’s maximum classification accuracies of 
three datasets 

 ESELF SDA LRGPSSDR PCA LDA LRLFSDR 

COIL20(1) 80.60 80.41 84.44 81.94 80.06 86.32 

COIL20(2) 78.66 80.41 84.63 82.61 80.84 86.43 
COIL20(3) 77.28 81.04 84.12 82.72 80.52 86.16 

PIE(1) 55.17 63.84 75.15 33.08 68.24 76.79 

PIE(2) 40.83 63.08 75.15 32.71 68.29 76.45 
PIE(3) 34.38 63.21 73.82 32.98 68.48 74.95 

YaleB(1) 64.83 70.04 77.96 40.44 76.30 79.66 

YaleB(2) 61.74 69.31 77.35 40.48 76.35 78.66 
YaleB(3) 54.28 69.74 77.72 40.18 76.31 77.72 

Maximum classification accuracies of Experiments 4-

6 under different dimensions are listed in Table 3. It can be 

seen from Table 2 that the proposed LRLFSDR algorithm 

can offer optimal dimensionality reduction effect under 

most cases, indicating that it is superior to other algorithms 

under different amounts of labelled samples. 

TABLE 3 Experiments 4-6’s maximum classification accuracies of 

three datasets 

 ESELF SDA LRGPSSDR PCA LDA LRLFSDR 

COIL20(4) 88.36 87.90 92.03 90.00 87.54 92.63 

COIL20(5) 86.22 88.93 92.17 89.82 86.86 92.69 

COIL20(6) 85.52 89.89 92.07 90.46 87.21 92.43 

PIE(4) 61.73 79.94 85.21 47.27 74.01 87.43 

PIE(5) 58.84 80.12 84.58 47.18 74.00 86.65 
PIE(6) 57.13 80.65 85.26 47.30 74.03 86.32 

YaleB(4) 79.57 86.28 90.43 56.19 87.23 90.35 

YaleB(5) 70.17 86.57 90.07 56.37 87.05 90.50 
YaleB(6) 63.99 86.95 89.92 55.84 87.44 90.25 

5 Conclusions 

 

Experimental results demonstrate that the proposed 

LRLFSDR algorithm can achieve good dimensionality 

reduction effect under low dimensions. However, it 

neglects samples beyond the neighbourhood domain when 

calculating local reconstruction coefficient. Meanwhile, it 

sets only one neighbourhood parameter to the whole 

dataset, which neglects locality of data distribution to a 

certain extent. Therefore, how to involve data locality into 

the building of reconstruction coefficient requires further 

research.  
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