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Abstract 

The paper focuses on a capacitated vehicle routing problem with two objectives: one is attainment of specific load factor and the 

other is minimization of total travel cost. Our approach is based on artificial fish swarm algorithm, a swarm-based heuristic, which 

mimics the foraging behaviour of a fish swarm. After initializing a school of artificial fish, whose validity is guaranteed by a 

designed repair operator, global optimal solution search is processed through random behaviour, prey behaviour, swarm behaviour, 

and follow behaviour. Experimental results for a practical distribution instance are reported and show that the artificial fish swarm 

algorithm performs better than sweep algorithm and genetic algorithm. This paper contributes to the solution methods of vehicle 
routing problem. 
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1 Introduction 

 

In this paper, we present an artificial fish swarm 

algorithm for solving a bi-objective capacitated vehicle 

routing problem with attainment of specific load factor as 

the first objective and minimization of total travel cost as 

the second objective. The capacitated vehicle routing 

problem (CVRP) [1] is a static and basic version of the 

vehicle routing problem (VRP) [2]. Its objective is to find 

optimal routes for a fleet of m  identical vehicles serving 

a set of n  customers from a single depot. Each vehicle 

has a maximum capacity ),,1( miQi  . The demands 

jq  of the customers nj ,,2,1   are also deterministic 

and known in advance, and no split deliveries are 

available. A solution of the CVRP is described as a set of 

routs, each starting and ending at the depot and satisfying 

the conditions that each customer is visited only once and 

the accumulative demand of the customers in a same 

route for vehicle i  limits to the capacity iQ . A 

nonnegative cost ijc  originally based on the distance ijd  

exists between a pair of customers ),( ji , contributing to 

the total travel cost which should be minimized. As an 

extension of the well-known traveling salesman problem 

(TSP), the CVRP is NP-hard so that only small-sized 

instances can be solved to optimality using exact 

algorithms [1, 3]. Thus, considerable problem-specific 

heuristics and meta-heuristic algorithms including the 

sweep algorithm [4], the genetic algorithm [5-6], the tabu 

search [7], the artificial bee colony algorithm [8] and the 

ant colony algorithm [9] are introduced into the solution 

methods. However, to our knowledge, the artificial fish 

swarm algorithm [10] (AFSA) generally adopted for 

solving continuous problems is scarcely applied to 

CVRP. In this paper, we endeavor to expand the solution 

methods of CVRP by adopting AFSA, whose general 

procedure is illustrated in Figure 1. In real-life 

applications, the minimization of total distribution cost is 

often not the only objective. Various other aspects impact 

the quality of a solution [11]. Our work is just motivated 

by that kind of appeal from a company named Zhengzhou 

Coal and Electricity Materials Supply and Marketing 

Company (ZCEMS&M) in Henan province of China. The 

company devotes to convey dangerous goods from the 

depot to 14 coal mines. Without computation, the 

manager who is charging of distribution dangerous goods 

in ZCEMS&M used to assign the transport work 

arbitrarily and the decision making of a route is based on 

the manager’s empirical knowledge. To cutback the 

enormous operation cost brought by transportation, the 

manager resorted to our team for a decision support 

system concerning vehicle routing. One of the constraints 

they proposed is that the vehicles launch to serve the set 

of customers only if the total demand exceeds a 

deterministic load, the percentage of the total demand to 

the capacity. Therefore, to generalize the problem, we 

formulate it as a bi-objective CVRP, namely the CVRP 
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with minimum load constraint. 

In our work, we use the artificial fish swarm 

algorithm [10] to solve the considered problem. Finally, 

we compare the result with that of another two algorithms 

(sweep algorithm and genetic algorithm) and verify the 

validity and robustness of AFSA to resolve CVRP. 

The paper is organized as follows. Section 2 presents 

the mathematical model of the problem in this paper. In 

Section 3, different components of our algorithm is 

specified and integrated to operate. In Section 4, the 

algorithm is examined on a practical distribution instance, 

and the result is compared with that of the other two 

algorithms in the same circumstance. Section 5, 

eventually, gives concluding remarks and future research. 

 

 
FIGURE 1 General procedure of AFSA 

 

2 Model formulation 

 

This section describes our model for the bi-objective 

CVRP. It can be seen as a metamorphosis of the model 

applied by Laporte et al. [12-13] and P. Reiter [14] for the 

DCVRP and CVRPB. The CVRP with two objectives in 

this paper (One is attainment of specific load factor and 

the other is minimization of total travel cost) is 

formulated as follows. The problem stretches itself on an 

undirected graph ),( EVG  , where  nV ,,1,0   is the 

set of vertices, namely the depot and customers, and 

  jiVjijiE  ,,:,  is the set of edges. Index 0 

denotes the depot where m available vehicles 

 mM ,,1  of capacity )(vQ  (of which  mv ,,1  

and denotes a vehicle) are located. Meanwhile, the set of 

customers is given as  0\0 VV  . Each customer i  has a 

nonnegative demand )(iq . Moreover, to each edge 

Ee , a cost value ec , which can also be interpreted as 

the distribution time or as the length of edge e  is 

associated. The cost matrix C  is composed of all the cost 

values. We assume that C  is symmetric and no service 

time are present. But the elements of C  are not supposed 

to fulfil the triangle inequality (i.e., the distance function 

of every two customers is not a metric but given as a 

parameter). 

For abbreviation, )(S signifies the set of edges in G  

with exactly one end vertex in S , e.g., 

  SVjSiEjiS \,:,)(  , and )( i  is simply 

marked as )(i . Furthermore, )(S denotes the set of 

edges with both end vertices in S  e.g., 

  SjiEjiS  ,:,)( . Finally, ):( SS  is the set of 

edges with one end in S  and the other in S . For each 

edge e , the decision variable ex  is defined as the 

multiplicity of edge e being assigned as part of a route, 

where  1,0ex  if e  is not incident to depot, otherwise 

 0,1, 2ex   (because the situation where some vehicle 

only serves customer i  may exists, and thus edge 

 i,0 occurs twice). 

Additionally,   denotes the specific load factor. For 

each vehicle v , the decision variable vx  is defined as 

whether the load of vehicle v exceeds load factor  , of 

which 1vx  if it is, otherwise 0vx , and the decision 

variable 
rx  is defined as whether the load of vehicle r  

exceeds 0, of which 1rx if it is, otherwise 0rx . 

The considered bi-objective CVRP of this paper is 

provided by the following linear bi-objective 

optimization problem. The problem formulation contains 

the function ),( vi , which is defined as whether vertex i  

is in the route of vehicle v , and equals 1 if it is, otherwise 

0.  
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Equation (1) defines the two objective functions to be 

minimized, of which P denotes a constant that is large 

enough. Equations (2) and (3) convince that exactly two 

edges are incident to each customer vertex and that 

accurately m2  edges are connected to the depot vertex. 

Equation (4), finally, restricts that the total demand of the 

customers that each vehicle serves cannot exceeds its 

capacity. 

It should be noted that with constraint (3), the number 

of routes is a variable, i.e., when the total quantity of a set 

of demands is too small and a single vehicle can cover 

with a load approximating load factor  , and other 

vehicles have no need to be launched and their loads 

equal 0. So, the vehicles available are scheduled 

dynamically. 

 

3 Algorithmic solution 

 

As a swarm-based heuristic, which mimics the foraging 

behaviour of a fish swarm, AFSA has outstanding 

performance in solving complicated practical problems, 

and becomes eye-catching for its simplicity of simulation. 

The algorithm searches for the global optimum value 

through individuals executing various behaviours. 

In this section, firstly, separate components of the 

algorithm are explained, and then how they are woven 

together to solve the CVRP is described. 

 

3.1 INITIAL SOLUTION 

 

The artificial fish (AF) is the individuals that swim to 

find the optimal solution. Each AF holds a variable, 

namely the solution of the problem. Section 3.1.1 

presents what is the solution looks like and how to 

formulate a solution. In Section 3.1.2, we proposed a 

repair operator to guarantee feasibility of solutions 

represented by AF. 

 

3.1.1 Solution presentation 

 

Each AF is denoted by a two-dimensional array ]][[ nmx , 

of which m  is the quantity of vehicles and n  is the 

quantity of customers. In this paper, we consider 

relatively large-scale vehicle routing problem, with more 

than 2 vehicles. The array can also shortly written as x . 

Figure 2 illustrates a representation of a CVRP instance 

with 4m  and 14n . For each value of the array, 

),,1,,,1](][[ njmijix    denotes the j th customer 

that the vehicle i  serves, e.g., 4]2][1[ x  and 

0]5][1[ x , because vehicle 1 serves the fourth customer 

and the fifth customer does not exist. 

2 4 7 9 0 0 0 0 0 0 0 0 0 0

8 6 3 11 1 0 0 0 0 0 0 0 0 0

14 5 12 13 10 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0  
FIGURE 2 Solution presentation  

As Figure 2 shows, vehicle 1 serves customer 2, 4, 7, 

and 9, and its route can be denoted as 0 – 2 – 4 – 7 – 9 – 

0, of which 0 is the depot; vehicle 2 serves customer 8, 6, 

3, 11, and 1, and its route can be denoted as 0 – 8 – 6 – 3 

– 11 – 1 – 0; vehicle 3 serves customer 14, 5, 12, 13 and 

10, and its route can be denoted as 0 – 14 – 5 – 12 – 13 – 

10 – 0; vehicle 4 serves none of the customers and is not 

launched. Obviously, the solution satisfied the constraints 

of Equation (2) and Equation (3) in our model, see 

Section 2. To facilitate the following behaviours, we 

prescribe that all the customers should be located before 

the 0s, so the customer next to 0 is the last customer the 

vehicle visits. 

To initialize a solution, we assign the 1~ n customers 

into a stochastic vehicle route. Therein, the customers are 

randomly ordered to assure the diversity of the fish 

swarm.  

 

3.1.2 Repair operator 

 

For AF x , when the total demand g  of the customers in 

vehicle i  exceeds the capacity )(iQ , we need to keep 

removing the customers backward from the last one until 

)(iQg  , and record them into the single array ][nb . The 

locations that the removed customers used to sit are filled 

by 0s. As to the customers stored in array b , we reassign 

them to the other vehicles and the launched vehicles are 

at the first consideration. 

 
FIGURE 3 Procedure of repairing AF 
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Notes: 4, 14, 14,m n visual n     

2 4 7 9 0 0 0 0 0 0 0 0 0 0

8 6 3 11 1 0 0 0 0 0 0 0 0 0

14 5 12 13 10 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

x   

However, it may happened that when all the vehicle 

are saturated, some customers are still not reassigned and 

are stored in array b . In this case, we deem AF x  a dead 

fish. To isolate that dead fish, we put 1~ n  customers into 

every row of the array x , so that it is permanently 

inferior to any live fish and cannot be perceived by the 

live ones. The concept of perception is explained in 

Section 3.3.1. Figure 3 illustrates the process of repair 

operator. 

 

3.2 FOOD CONCENTRATION 

 

We define food concentration as the objective functional 

values of AF. For abbreviation, )(xf  denotes the food 

concentration of AF x . Equation (5) represents the 

calculation process of )(xf , and the values of the 

decision variables on the right can be obtained according 

to the solution x . For detail of the right part, see the 

mathematical model in Section 2. 


 Ee

ee
Mv

v xcPxxf )( . (5) 

3.3 BEHAVIOURS OF ARTIFICIAL FISH 
 

The process of AF’s optimization is achieved by three 

kinds of basic behaviours. This section discusses how to 

realize its perception and behaviours of prey, swarm, and 

follow. 
 

3.3.1 Perception 

 

Perception ensures that AF is able to perceive the state of 

other fishes and the surrounding environment. The scope 

of perception is limited, and visual is the threshold. If the 

distance between AF x  and xv , ( , )d x xv , is bigger than 

visual , AF x cannot perceive xv . As to the distance d , 

we define it as the degree of similarity between two 

variables. 


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Equation (6) and (7) denotes how to calculate the 

distance of AF xv  to focal AF x . As we have designed 

them as arrays, each AF consists of nm  values located 

in their respective rows and columns. If the two values, 

ijx  and ijxv , both of which are in row i  and column j , 

are not equal, ije  equals 1 and the 1 adds to ),( xvxd , 

otherwise ije  equals 0 and the 0 adds to ),( xvxd . 

It can be seen from the definition of variable that each 

value of the variable is just a symbol, and does not share 

digital meaning, thus, the addition and subtraction of 

variables is meaningless to the distance calculation. 

Therefore, the general methods calculating the distance of 

multi-dimensional vector is not appropriate, and may 

distort the visual perception of AFs. However, the 

problem-specific method introduced in this paper latch on 

the essence of distance and is much more logical and the 

bigger the value of distance, the higher level of 

heterogeneity between the two variables. When the value 

is bigger than our given threshold visual , the two fish are 

invisible to each other. The worst condition of the 

distance calculation occurs when the two distribution 

schemes are totally dissimilar and the relative distance is 

n2  (The location of customers 1~ n  are all different, then 

nnnd 2 ). Therefore, visual should be smaller than 

n2 . 

As values of a dead fish do not equal 0 in every 

location, its distance to any live fish should be no less 

than nnm  , and it is invisible for any live one. 

Meanwhile, behaviours of the live fish are perfectly 

isolated from the dead. 

 

3.3.2. Behaviour of prey 

 

We decompose the behaviour of prey into three 

procedures. Firstly, the focal AF x stochastically searches 

a point xv  that is perceivable, legitimate, and feasible. As 

to guarantee perceivably, the number of customers that 

each vehicle serves and the route along which each 

vehicle travels of xv  should be similar to that of x  at a 

specific level so that ( , )d x xv visual . As Section 3.3.1 

explained, during the comparison of each value in row i  

and column j  of xv  and x , a 1 is added to ( , )d x xv  in 

one of the three conditions: (a) 0ijx   and 0ijx  ; (b) 

0ijxv   and 0ijx  ; (c) 0ijxv   and 0ijx  , but 

ij ijxv x . To simplify the illustration, we use s  to 

signify the number of locations in condition (a), 's  in 

condition (b), and t  in condition (c). In addition, t  

denotes the number of locations in the condition that 

0ijxv  , 0ijx  , and ij ijxv x . The distance then can be 

described by function ( , ) 'd x xv s s t    and we can 

derive from the principle of the solution in Section 3.1.1 

that s t t n    and 's t t n   . Therefore, 's s , 

( , ) 2d x xv s t visual   , and 0 / 2s visual  , i.e. 

there should be at least min / 2s n visual   locations 

where 0ijxv   and 0ijx  . To formulate a xv , firstly we 
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should specify the locations in xv  where we allocate the 

n  customers by sequentially selecting mins  locations in 

xv  where 0ijx   from the first column and randomly 

distributing the rest min( )n s  locations in back of the 

selected locations. For instance, see Part I in Figure 4, 

where we present an instance with visual  equalling n  

and x  equalling the solution presented in Figure 2.  

Having fixed the locations, we can get the exact value 

of s , and thereby the interval of t  should be 

 max( ,0),n s visual n s   . Secondly, we should 

specify the route of each vehicle, i.e. the values of each 

row in array xv , by randomly choosing 

min max( ,0)t n s visual    locations where 0ijxv   and 

0ijx   and assigning 
ijxv  as 

ijx , and sequentially 

inserting the rest ( )n t  customers that are stochastically 

ordered into the other blank locations. For instance, see 

Part II in Figure 4. For feasibility, the repair operator 

designed in Section 3.1.2 is introduced to remedy xv . 

Although ( , )d x xv  might slightly exceed visual , we 

regard the excess acceptable to avoid the further 

sophisticated and nonessential repair operation. 

Part I Location specifying 

(1) Sequentially select min / 2 7S n visual    

location in xv  

_ _ _ 0 0 0 0 0 0 0 0 0 0 0

_ _ 0 0 0 0 0 0 0 0 0 0 0 0

_ _ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

xv 

 

(2) Randomly distribute the rest min( ) 7n s   

locations in back of the selected locations 

_ _ _ _ 0 0 0 0 0 0 0 0 0 0

_ _ _ _ 0 0 0 0 0 0 0 0 0 0

_ _ 0 0 0 0 0 0 0 0 0 0 0 0

_ _ _ _ 0 0 0 0 0 0 0 0 0 0

xv 

 
 

Part II Rout specifying 

(1) Randomly choose 
min max( ,0) 4t n s visual     

locations where 0ijxv   and 0ijx   and assign ijxv  

as 
ijx  

_ 4 _ 9 0 0 0 0 0 0 0 0 0 0

_ 6 _ _ 0 0 0 0 0 0 0 0 0 0

14 _ 0 0 0 0 0 0 0 0 0 0 0 0

_ _ _ _ 0 0 0 0 0 0 0 0 0 0

xv 

 

(2) Arrange the rest ( ) 10n t  customers in stochastic 

order as 

 1,2,11,3,12,5,7,8,13,10rC   

(3) Sequentially inserts the customers in rC  into the 

blank locations 

1 4 2 9 0 0 0 0 0 0 0 0 0 0

11 6 3 12 0 0 0 0 0 0 0 0 0 0

14 5 0 0 0 0 0 0 0 0 0 0 0 0

7 8 13 10 0 0 0 0 0 0 0 0 0 0

xv 

( , ) 12 .d x xv visual  
 

FIGURE 4 Instance of searching a perceivable point 

Secondly, xv  is estimated whether it is better than x . 

If it is, the values of variable xv  will be recorded in 

another variable xn  signifying the next status of x  and 

originally equal the values of x . Otherwise, AF x  

repeats the first procedure until a better xv  is obtained 

for _try number  times at most. If after repeating 

_try number  times a better xv  still cannot be found, AF 

x  will try the random behaviour, which means to 

exchange the locations of two customers, i  and j , 

stochastically. Customer i  and customer j  can be in the 

same route of a vehicle or not, and the updated status will 

be recorded in xn . The random behavior prevents AFs 

from trapping into the local optimum and proceeds to the 

global optimum. 

Thirdly, the food concentration of x  after trying the 

behaviour of prey, namely ( )f xn , is obtained. What to 

keep an eye on is that trying behaviours does not mean to 

update x  with the optimized status but record the status 

in variable xn . 

In the general artificial fish swarm algorithm applied 

to solve continuous problems, parameter step  is set to 

standardize the behaviours of AF. However, in this 

CVRP problem, every variable denotes a feasible 

distribution scheme, so the solution set is not continuous, 

but discrete, and the values of each variable are not 

numeric, but nominal. Obviously, the definition of step  

is nonessential to this problem. Setting step , and 

enforcing AFs move in terms of step , would illegitimate 

the variables so that they need significantly complicated 

repair. Instead of step by step, we enable AFs to jump to 

better status directly. 

 

3.3.3 Behaviour of swarm 

 

The behaviour of swarm is condensed into four 

procedures. Firstly, the focal AF x  finds fn  friends, all 

the other AFs perceivable, and records the variables into 

three-dimensional array  _ [][]fri fish number , of which 

fn  denotes the quantity of AFs in the perception scope of 

x  and _fish number  denotes the quantity of all AFs. 

Secondly, we calculate the centre of these friends who 

is recorded as a temporary AF xc . For each location, i.e. 

row i  and column j , we calculate the frequencies of 0 
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and each customer, ranging from 1 to n , and record the 

frequencies into single-dimensional array max[ 1]n . 

The value of max[ ]r  signifies the frequency of customer 

r  occurring in this location, and max[0]  the frequency 

of 0. The customer or 0 who owns the biggest frequency 

is recorded in xc  in the designated location, row i  and 

column j . And the values of xc  in other locations are 

calculated in the same way. Then, two illegal situations 

may happen to xc , where (a) some customers emerge 

repeatedly in various locations and (b) some customers 

never occur. Therefore, we propose a series of remedies. 

To remedy situation (a), we record the frequencies of 

occurrence for 1~ n  customers in locations of xc  into 

single-dimensional array [ 1]b n , of which the value of 

[ ]b i  denotes the frequency of customer i  in xc , and 

[0]b  represents the frequency of 0; simultaneously, the 

locations in which a customer occurs again are assigned 

as 0, recording their row labels and column labels into the 

two-dimensional array [ ][2]rc n , of which [][0]rc  is the 

row label and [][1]rc  is the column label. After that, 

locations of xc  with repeated customer are substituted 

for 0, and we can locate the places by reading data in 

array [ ][2]rc n . 

To regulate situation (b), we scan values in array b  

and put customer i , of which [ ]b i  equals 0, in the 

locations stored in array rc . If some customers in the 

same boat remain, they are added to the launched vehicle 

arbitrarily. However, if the locations stored in array rc  

remain and happen to be in the middle of the route, xc  

violate the definition laws. A further remedy is necessary. 

Therefore, we move the customers after 0 forward, and 

the 0s before customer backward. Moreover, in order to 

cover the validity of xc , it is corrected by repair operator 

designed in Section 3.1.2. 

Thirdly, we figure out whether (a) xc  is superior to x  

and (b) it is not crowded around xc . If the condition 

above is satisfied, the values of xc  are recorded in xn , 

otherwise xn  remains the same to x . Condition (a) is 

based on comparing the food concentration of x  and xc , 

namely ( )f x  and ( )f xc . Equation (8) denotes condition 

(b), i.e., if the food concentration of xc  multiplied by the 

quantity of friends of x , fn , is bigger than the saturation 

factor   multiplied by the food concentration of x , AF 

x  thinks that it is too crowded around xc . Equation (9) 

denotes that the saturation factor  , one of the 

parameters of the algorithm, is determined by 
maxn , the 

expectation of the maximum quantity of individuals we 

want to see near the extremum, and a , at what level we 

want the function value of individuals to approximate the 

extremum. For example, when we have determined that 

there should be at most 15 AFs around the target point 

whose food concentrations approximate that of the point 

at level of 80%, the saturation   equals 12. 

( ) ( )ff xc n f x , (8) 

maxan  , 

0 1a  . (9) 

Fourthly, the food concentration of xn , ( )f xn , is 

returned, same to the last procedure of the behaviour of 

prey. 

 

3.3.4 Behaviour of follow 

 

As to the behaviour of follow, focal AF x  firstly picks 

out the optimal one from its friends whose distance to x  

is within the perception scope, and we record values of 

the optimal friend and the quantity of the friends of x  

into a temporary AF xm  and a numerical variable 
fn  

respectively. Then, if xm  is superior to x  and it is not 

crowded around xm , namely ( ) ( )f xm f x  and 

( ) ( )ff xm n f x , xm  is duplicated by xn , otherwise 

xn  remains the same to x . Finally, the behaviour of 

follow returns the food concentration of xn  like the 

behaviours above. 

 
FIGURE 5 Complete flow of AFSA 

 

3.4 EVALUATION OF THE BEHAVIORS 

 

The evaluation of behaviours illustrates the logic of 

behaviour execution. For AF x , it is commended to try 

the behaviour of follow fist. If the food consistence 

returned by this behaviour is smaller, x exits the function 
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directly with the value of )(xnf  returned, otherwise tries 

the behaviour of swarm, and if the food consistence 

returned is smaller, x  also exits the function directly with 

the value of )(xnf  returned, otherwise executes the 

behaviour of prey, and then exits with the value of )(xnf  

returned. Variable xn  is the next status of AF x , just as 

the sections of three behaviours clarified. 

 

3.5 ACTION 

 

Action means to update the focal AF x  with xn . 

Although AF x  tried many behaviours to optimize itself 

beforehand, its status has never been updated till now. 

 

3.6 BULLETIN 

 

Bulletin always holds the best record, variable xbest _ , 

throughout the algorithm. It is set to compare the variable 

x put into the bulletin function with xbest _ , based on 

their food concentrations. If x is superior to xbest _ , all 

the values of x will be duplicated to xbest _  to guarantee 

the optimality of xbest _ . 

 

3.7 INTEGRATION OF THE COMPONENTS 

 

In this section, we illustrate how to conduct the entire 

process of the optimization. The algorithm this paper 

introduced progresses in four procedures. Firstly, we 

assign all the parameters, since they are the basic 

standard of the algorithm-processing environment and 

different sets of parameters lead to significantly distinct 

efficiency. The parameters are the number of vehicles and 

customers, m and n , the capacity of each vehicle, )(iQ , 

and the cost matrix, C . Figure 5 illustrates the entire 

flow of algorithm. 

Procedure 1: Input of the demands. The 

deterministic set of demands activates the algorithm. 

However, in case the demands surpass the total load 

ability of vehicles, we should, firstly, judge the legality of 

the demands. In the algorithm, we tolerate a conditional 

extent of the demands exceeding the capacity. If a 

demand is bigger than the capacity, we split it by the 

capacity and cutback one of the vehicles, so the available 

vehicles is decreased to 1m . The surplus formulates a 

new demand used to update the demand of the original 

customer. With the decrease of available vehicles, m may 

equal 0, then a new circle of fleet scheduling begins and 

m is reset to the initial one. Then, go to Procedure 2. 

Procedure 2: Initialization. For the best record 

_best x , we set it to the status of a dead fish. Then, the 

_fish number fishes in the swarm are initialized, during 

which all the fishes are compared with _best x  in the 

process of Bulletin to update the best record. As to the 

dead fish formulated in period of initialization, we denote 

the multiplicity of them as die . Therefore, the number of 

live fish is _fish number die . If it equals 0, we have to 

add the vehicles that are available, otherwise go to 

Procedure 3. For that, we choose to circularly use the 

current vehicles, meaning the reused vehicle will serve 

twice. 

Procedure 3: Optimization. The artificial fishes are 

in turns to action the behaviours based on the logic 

interpreted in evaluation of behaviours section, and 

update the bulletin instantly. While one cycle of that 

finishes, one turn of iteration accomplishes. When it adds 

to the maximum T times, the algorithm terminates. 

Procedure 4: Reporting. Variable _best x  holds the 

optimal solution we find. To make it more 

comprehensive, we translate _best x  to distribution 

scheme that can be generally understood by the people 

outside this work. 

 

4 Computational experiments 

 

We have tested the AFSA algorithm on a practical 

instance of Zhengzhou Coal and Electricity Materials 

Supply and Marketing Company (ZCEMS&M). The 

experiment was performed on 1.86 Gigahertz computer, 

and the algorithm was coded in Visual C++ 6.0. The 

number of artificial fishes _fish number , the bound of 

perception visual , the times of independently searching 

_try number , the maximum iteration time T  and the 

saturation factor are set as Table 1. 

 
TABLE 1 Parameter Presentation 

numberfish_  visual  numbertry_  T    

50 16 20 5000 9 

 

4.1 IMPLEMENTATION DETAILS 

 

The dangerous goods distribution problem of 

ZCEMS&M can be described as that 4 vehicles that 

locate at a single depot serve 14 customers, namely the 

coal mines. That kind of vehicle routing problem takes 

place in the company every day, so the cost reduction 

brought by computerized optimization is fairly attractive 

to the company. The information of vehicles is presented 

in Table 2.  

 
TABLE 2 Information of vehicles 

The number of vehicles 4 

Capacity 2 2 2 2 

Label 4545 4537 893 763 

Oil consumption per kilometre 11.5 11.5 11 11 

 

However, compared to the mathematical model, the oil 

consumption per kilometre of each vehicle 

),,1)(( miioil   is added to the property of vehicle. We 

set oil price p  as 6 yuan per litre. Relatively, the food 
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concentration calculation is changed by multiplying the 

total distance of each route of vehicle i  by )(6 ioil . 

And the distances between each two customers are a 

general knowledge among the managers, shown in Table 

3. The data serve to fulfil cost matrix C . The company 

claims that they are unwilling to launch a vehicle when 

the work load is under 5/6 of the vehicle capacity. 

To verify the validity of the algorithm, we test four 

sets of demands which are shown in Table 4. Then, one 

of the sets of demands is chosen to test by other 

algorithms, such as the sweep algorithm (SA) and the 

genetic algorithm (GA). All of the results are shown in 

Section 4.2. 

 

4.2 RESULTS ANALYSIS 

 

Figure 6 shows the results of four sets of demands tested 

by AFSA. We can see that in each instance the optimal 

solution is obtained by iterating at most 260 times of set 

2. The iterations of set 1, 3 and 4 are 22 times, 18 times, 

66 times, respectively.  

TABLE 3 Distances between each two customers 

Distance (km) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 0 10 28 23 65 16 16 42 16 21 85 23 35 70 23 

1 10 0 76 72 150 52 52 104 42 62 190 60 90 110 65 

2 28 76 0 106 74 48 83 28 88 58 186 106 86 146 106 

3 23 72 106 0 180 82 82 134 18 92 220 18 120 110 10 

4 65 150 74 180 0 122 157 56 162 132 172 180 120 215 180 

5 16 52 48 82 122 0 59 76 64 34 162 82 62 117 82 

6 16 52 83 82 157 59 0 111 64 69 197 82 97 74 82 

7 42 104 28 134 56 76 111 0 116 106 126 134 114 283 134 

8 16 42 88 18 162 64 64 116 0 74 202 18 102 112 18 

9 21 62 58 92 132 34 69 106 74 0 172 92 72 127 92 

10 85 190 186 220 172 162 197 126 202 172 0 220 110 255 220 

11 23 60 106 18 180 82 82 134 18 92 220 0 120 130 10 

12 35 90 86 120 120 97 97 114 102 72 120 120 0 155 120 

13 70 110 146 110 215 74 74 283 112 127 130 130 155 0 120 

14 23 65 106 10 180 82 82 134 18 92 220 10 120 120 0 

Notes: 1-14 denote the corresponding fourteen coal mines; 1 denotes Peigou; 2 denotes Daping; 3 denotes Zhanggou; 4 

denotes Baiping; 5 denotes Micun; 6 denotes Chaohua; 7 denotes Gaocheng; 8 denotes Lugou; 9 denotes Laojuntang; 10 denotes Jinlong; 11 denotes Zhenxing; 12 denotes 

Cuimiao; 13 denotes Zhaojiazhai; 14 denotes Sanlimeiye; so do the following 1~14 in other figures and tables. 

 

TABLE 4 Four sets of the demands 

sets 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0 0.8 0 0.9 1.3 1.5 0 0 0.3 0.2 1 0 0.6 0.4 

2 0.2 0.8 0.3 0.7 0.5 1 1 1 2 0.1 0.1 0.2 0.2 0.3 

3 2 0.2 0.5 0.1 1.3 0.1 1.5 1.8 0 0 0.2 0.3 0.4 0.4 

4 0.5 1 1.5 0 0.2 0 0.8 0.2 0 1 0 0.1 0.5 1.2 

 

TABLE 5 Comparison results of the Algorithms 

Algorithm Solution Total cost Average load launched vehicle 

AFSA 1 

0 -> 7 -> 2 -> 1 -> 0; 

0 -> 8 -> 3 -> 13 -> 5 -> 0; 
0 -> 10 -> 12 -> 14 -> 0. 

492.18 116.67% 3 

AFSA 2 

0 -> 1 -> 8 -> 14 -> 0; 
0 -> 3 -> 0; 

0 -> 13 -> 10 -> 12 -> 0; 

0 -> 7 -> 2 -> 5 -> 0. 

412.0 87.5% 4 

SA 

0 -> 7 -> 2 -> 1 -> 0; 

0 -> 3 -> 8 -> 0; 
0 -> 14 -> 13 -> 5 -> 0; 

0 -> 10 -> 12 -> 0. 

452.55 87.5% 4 

GA 

0 -> 12 -> 5 -> 2 -> 7 -> 0; 
0 -> 3 -> 0; 

0 -> 14 -> 8 -> 1 -> 13 -> 0; 
0 -> 10 -> 0. 

465.87 83.75% 4 
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FIGURE 6 Four sets of demand test results of AFSA 

 

The set of demands that we choose to test by other 

algorithms is the fourth, and Table 5 shows the results. 

Since the sweep algorithm and genetic algorithm have not 

consider the first objective of our model, to assure the 

comparability, we set the load factor of the algorithm as 0 

to liberate the minimum load constrain and the artificial 

fish swarm algorithm in that situation is signed as AFSA 

2, with AFSA 1 denotes the original standard. We can see 

from the table that only AFSA 1 completely satisfied our 

first objective, but the cost of AFSA 1 is higher than 

other algorithms. However, if we release the minimum 

load constrain, AFSA is significantly superior to other 

two algorithms. Furthermore, it implies that the company 

may suffer increased transportation cost by achieving the 

satisfied load.  

 

5 Conclusions 

 

In this paper, we present an artificial fish swarm 

algorithm (AFSA), a fairly new heuristic, for the 

capacitated vehicle routing problem (CVRP) with the 

minimum load constrain. The strategy and optimization 

process of the AFSA is not complicated and can be 

applied for practical problem solving appropriately. 

However, when coming across some general designs of 

components that violate the well-known laws of real 

world, the author is suggested to bravely abandon the 

trivial ones, or innovatively redesign them in terms of the 

specific problem. For example, we have discarded the 

component step incident with behaviours of the artificial 

fishes in Section 3.3, and provided a new method of 

perception process and central point calculation in 

Section 3.3.1 and 3.3.3 for VRP solving by AFSA. This 

paper will continuously consider more actual restrictions 

such as the volume of goods, accidents during the 

distribution and emergency factors in order to enrich the 

content of VRP. Meanwhile, more intelligence algorithms 

can be applied as taboo algorithm, ant colony algorithm, 

artificial bee colony, etc. 
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