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Abstract 

In this paper, we proposed a modified nonmonotone method for nonlinear complementarity 
problem, different from the existed methods, we transform the original problem to a semi-smooth 
equation by using a piecewise NCP function, and combined with the nonmonotone line search. 
Only one nonlinear equations need to be solved per iteration so that the computational costs are 
reduced. Under some suitable assumptions, we give the convergence properties of the proposed 
method and the numerical results to show that our method is efficient. 
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1 Introduction 

We consider the following nonlinear complementarity 
problem NCP: find 

nRx , to satisfy: 

0 ( ) 0, ( ) 0Tx ,F x x F x   , (1) 

where 
nn RRF : is continuously differentiable 0P -

function, i.e., for all 
nRyx ,  with yx  , there exists an 

index 0i  such that 

0 0 0 0 0 0
, ( )[ ( ) ( )] 0i i i i i ix y x y F x F y    . (2) 

The nonlinear complementarity problem is one of the 
important types of variational inequalities, mainly comes from 
the actual problem in the field of economy (such as balance 
problem) and relevant issues in the field of physics, mechanics 
and engineering (such as the discretization of infinite 
dimensional problem [1-3]). Therefore, the problem NCP (1) 
has attracted great attention due to its various application. One 
way of solving the nonlinear complementarity problem (1) is to 
construct a Newton method. This method is to solve a system 
of nonlinear equations: 

( )
( , ) 0

( , )

s F x
H x s

x s

 
  

 
, 

which is equivalent to (1). Among them, ),( sx  is a kind of 
NCP function satisfies:  

2

2

3 0, 3 0,

( , ) 3 0, 3 0,

9 9 0 3 , 3 0.

x
x if s x or s x

s

s
x s s if x s or x s

x

x s if x and x s or s x


     




       


      



 

nn RRF : is continuously differentiable 0P -function. 

Chen et al [4] investigate a semismooth Newton 

algorithm for 0P -NCP. In order ro improve the numerical 

results, Zhang et al [5] replace the monotone line search with 

a non-monotone line search when they fulfill the algorithm. 

Qi H D and Qi L Q [6] propose a new QP-free method which 

ensures the strict feasibility of all iterates based on the 

Fischer-Burmister NCP function. They also prove that the 

method has global convergence without isolatedness of 

accumulation point and strict complementarity condition. 

D.G.Pu et al [7] minimizes a smooth function subject to 

smooth inequality constraints. This iterative method is to 

solve a nonsmooth equations that are obtained by the 

multiplier and the Fischer-Burmeister NCP function. Liu 

and Pu [8] present 3-1 piecewise NCP function for new 

nonmonotone QP-free infeasible method. This method 

proved globally convergent without a linear independence 

constraint qualification. 

Motivated by the above ideas, we construct a Newton 

method based on the solution of nonlinear equations 

obtained by the 3-1 piecewise NCP function for the 0P -

NCP function. The acceptance of a trial step is more flexible 

by means of nonmonotone techniques. In this algorithm, we 

only need to solve one nonlinear equations per iteration so 

that the computational costs are reduced. The method has 

proved to be implementable and globally convergent 

without a strict complementarity. 

This paper is organized as follows. In the next section, 

we introduce the 3-1 piecewise linear NCP function and the 

properties of it. The nonlinear complementary problem is 

transformed into equivalent system of nonlinear equations. 

In Sect.3 introduces the algorithm. In Sect.4 proves the 

algorithm to be implementable and presents the algorithm's 

convergence theory. 
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2 Preliminaries 

Function RR 2:  is called an NCP function when 
0),( ba  if and only if 0,0  ba  and 0ab . The 3-1 

piecewise linear NCP function is defined as: 

2

2

3 0, 3 0,

( , ) 3 0, 3 0,

9 9 0 3 , 3 0

a
a if b a or b a

b

b
a b b if a b or a b s

a

a b if a and a b or b a


     




       


      



. (3) 

If ( , ) (0,0)a b  , then  

2

2

2

2
3

0, 3 0,

( , ) 0, 3 0,
2

3

9
0 3 , 3 0

9

a

b
if b a or b a

a

b

b

aa b if a b or a b
b

a

if a and a b or b a

  
  

       
  
  
 

  
  


       
     


 

      
 




. (4) 

Detailed Property and application of piecewise NCP 
function see [9]. 

It is easy to check the following Proposition. 
Proposition 2.1 For the function ),( ba  the following 

holds. 
1. ( , ) 0a b s   0, 0a b   and 0ab ;a 
2. the square of   is continuously differentiable; 
3.   is twice continuously differentiable 

everywhere except at the origin, but it is 
strongly semismooth at the origin and is a 
pseudo-smooth NCP function. 

Constuct function: 
2 2: n nH R R  

( )
( , )

( , )

s F x
H x s

x s

 
  

 
. (5) 

For the update of s, we require it infinitely close to F(x), So 
we order s-F(x)=0. Therefore, contacting the first line of 
Proposition 3, we know that nonlinear complementarity 
problem (1) is equivalent to solving the minimization problem: 

min ( , )

( , ) || ( , ) ||

x s

x s H x s



 
. (6) 

3 Algorithm 

For solving (6), we need to introduce the following symbols 

(1, 1) ( , ) (0,0)
( )

( , )

k k
i i

x s

x s otherwise


   


, (7) 

ni 2,1 , obviously, 0k
i   and 0k

i  . 
Compute the Jacobian matrix ( , )k kV x s  of ( , )k kH x s , 

we get 

( )
( , )

( ) ( )

k
k k

k k
i i

F x I
V x s

diag diag

 
  
   

, 

where I is identity matrix of nn , )( k
idiag   or )( k

idiag   
denotes the diagonal matrix whose i th diagonal element is 

k
i  or 

k
i , respectively. 

We now present the algorithm combining a Newton 
method with the nonmonotone line search, the following 
algorithm is obtained d and  by calculating system of 
nonlinear equations, which from the Hessian of H. In order 
to solve: ),(min sx , we adopt the nonmonotone line 
search based on [8], so that the trial step is more flexible. 

Algorithm 3.1 
Step 0. Initialization:  
Given initial point: 

0 0, , (0,1), 0 1, 0.nx s R k       

Step1. If 0),( kk sx  then stop. Otherwise, 
calculation of the search direction: 

Calculate kd and k  by solving the following linear 
system in ),( d : 

( )

( , )

k k

k k k

d F x s
V

x s

  
         

, (8) 

Step 2. Nonmonotone line search. 
Step 2.1. If 

),(),( kkkkkk sxsdx   , (9) 

||||max),(
1)(0

rk

kmr

kkkk sdx 


  , (10) 

where },,1)1(min{)(0,0)0( Mkmkmm   M is a 
positive constant. 

Then let 
1 1,k k k k k kx x d s s     , go to step 3. 

Otherwise go to step 2.2. 

Step 2.2. Let 
1 1,k k k k k k

k kx x d s s      . 

Where )10(   j
k  and j is the smallest non-

negative integer and satisfied: (10). 
Step 3. Update: let 1k k   and go to step 1. 

4 Convergence 

In this section, we discuss the global convergence property 
of algorithm with the nonmonotone line search. In order to 
achieve the convergence of the algorithm, we give some 
Assumptions as follows: 

Assumption 4.1 
A.

nn RRF ：  is continuously differentiable 0P -
function, so that )(xF  is positive semidefinite.  

B. F is Lipschitz continuously differentiable, namely, 
there exists a constant L  such that for all 

nRxx 21, , 
nRyy 2

21,   

1 2 1 2|| ( ) ( ) || || ||F x F x L x x   , 
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1 2 1 2|| ( ) ( ) || || ||H y H y L y y   . 

Lemma 4.1 If 0k then given any 0   there is a 

0t  , such that for any 0 t t   and any k, 

2 2 2
( , ) (2 )k k k k k kx td s t t           

Proof: If 0k   implies 

( ) ( ) ( , )k k k k k kdiag d diag x s       . (11) 

We define that if ( , ) (0,0)x s  , then 

),(),( k
i

k
i

k

i

k

i   . 

Otherwise, )),(),,(( kkkk
i

kk

i
kk

i dsxd   . 

Where (( , ), ( , ))k k k k
i x s d   is the direction derivative 

of ( , )i x s  at ( , )k kx s  in the direction ( , )k kd  . Let 

( )
k

diag   or ( )
k

diag   denote the diagonal matrix whose 

ith diagonal element is 
k

i  or 
k

i , respectively. 

Clearly, for all i,  

( , ) ( ) ( )
k kk k k k k k k

i i i ix td s t t d t           . (12) 

It follows by the definition of above, we have 

2 22
( ( ) ( ) ) (1 2 ) ( ) ( )

k k k kk k k k k kt diag d diag t t diag d diag              . (13) 

It follows from (12) and (13) that, given any 0  , 
there is a 0t  , such that for any 0 t t  , 

2 2 2
( , ) (2 )k k k k k kx td s t t          . 

Hence, this lemma holds. 
Lemma 4.2 For all k, there is an 0min  such that 

0min k . 

Proof: Assume 0k  for sufficiently large k, it 

follows by Lemma 4.1 that, for all k, 0k  and any 

},
2

1
min{ t









 . 

2 2 2 2
2

0 ( ) 1
( , ) [1 (2 ) ] maxk k k k k k k r

r m k
x d s 

  
              . 

Lemma 4.3 If 0),( kk sxH  then 
kV  is nonsingular. 

Proof: Assume 0),( kk sxH , If 0),( Tk vuV  for 
some 

nT Rvu 2),(  , where ),( 21 nuuuu  , 
),( 21 nvvvv  , then 

0)(  IvuxF k
, (14) 

( ) ( ) 0k kdiag u diag v    . (15) 

From the definitions of 
k
i  and 

k
i  we know that 

0k
i   and 0k

i  for all i . 
So, )( kdiag   is nonsingular. We have 

udiagdiagv kk )())(( 1   . (16) 

Puting (16) into (14), and multiplying by 
Tu , we have 

1( ) ( ( )) ( ) 0T k T k ku F x u u diag diag u     . 

By the fact that )(xF  is the 0P -function, so all the 
principal minor determinant of )(xF  is non-negative, that 
is to say, )(xF  is positive semidefinite. And matrix 

1( ( )) ( )k kdiag diag   is positive definite. Therefore 
0u . It follows from (16) that 0v . Hence, 

kV  is 
nonsingular.  

Lemma 4.4 If 
*V is an accumulation matrix of }{ kV , 

then 
*V  is nonsingular. 

Proof: It is clear that 
kV  is nonsingular for all 

....2,1,0k  Since 
k
i  and 

k
i  are bounded without loss of 

generality, let 
*
i

k
i   , 

*
i

k
i    and let 

*xxk  , then 













 


)()(

)(
**

*
*

ii

k

diagdiag

IxF
VV


 

Let 
2nRv)(u,   be the solution of 0),(* TvuV   

0)( *  IvuxF , (17) 

  0)( **  vdiagudiag  . (18) 

In the next section, 
*V is proven to be nonsingular, 

which is equivalent to showing that )0,0(),( vu  
First, consider such an Jj  for which 0* j . From 

the definition of the 3-1 piecewise NCP function, it is only 
possible in the second area and 0 sx or 03  sx , 

2

0k
j

s

x

 
   

 
. 

Hence 03
2

3 
x

sk
j . Then for such an Jj , 

we deduce that the matrix )( *
jdiag   is nonsingular, and 

Jjv j  ,0  by (18). 

For Jj  such that 0* j , substituting (18) into (17) 

and multiplyng (17) by T
jv , then 

0)(

0:

*

*

*

*

 


j
T
jj

j j

jT
j IvvvxFv

j



. 

)( *xF  is positive semidefinite together with the 
0,0 **    implies Jjv j  ,0 .  
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This proves )0,0(),( vu  and hence *V  is nonsingular. 
Lemma 4.5 Suppose the Assumption 4.1 holds, 

,0),( kk sx as k . 

Proof: In view of convenience, if for all sufficiently large 

k (10) holds, define ||,||max||||
1)(0

)( rk

kmr

kl 


   where 

kklkmk  )(1)( . 

Since 1)()1(  kmkm , then  

( 1) 1

0 ( 1) 1

1

0 ( )

( ) 1

( )

|| || max || ||

max || ||

max{|| ||, || ||}

|| ||

l k k r

r m k

k r

r m k

l k k

l k

  

   

 

 



  

 

  

 

1 

So, |||| )(kl  is monotone decreasing, which implies that 

the ||}{|| )(kl  converges. 

It follows from (10) that |||||||| )1)(()(  kllkl  .  

Since )1,0( , therefore )(0||}{|| )(  kkl . 

Therefore 0|||||||| )(1  klk  holds by the 

Algorithm 3.1.  

That is, lim || || 0k

k
  . 

Lemma 4.6 Suppose the Assumption 4.1 holds, 

,0,0,0  kkk Hd  as k . 

Proof: Suppose the contrary that exists 0,0 21    

for a subsequence ),( kk sx  such that 

0,0 21   kkd . If 0k , then ),( kkd   is 

the decreasing direction of k  by lemma 4.1, which 

contradict 0lim 


k

k
 . Hence, .0,0  kkd   

*V  is nonsingular from lemma 4.4 together with 













 










0

)(

0

0 **
* sxF

V . It is seen that 0)( **  sxF  and 

0),( ** sx , namely, 0),( ** sx , so 

),(),( ** sxsx kk  is the solving of NCPs. 

5 Numerical tests  

In this section, we implemented Algorithm 3.1 for solving 
NCP. All experiments were performed on a personal 
computer with 2.0 GB memory and Intel(R) Core(TM)2 
Duo CPU 2.93 GHz. The operating system was Windows 7 
and the computer codes were all written in Matlab 7.1. 

In the following tables, IT denotes the number of 
iterations. CPU denotes the CPU time in seconds. 

kx  is the 
final value of x , FV denotes the value of ),( sxH  when 
the algorithm terminates. We considered the following 3 
examples. 

Example 5.1: Consider (1), where 
3Rx  and 

33:)( RRxF   given by 

2

3

2 3

( )

1

x

F x x

x x

 
 

  
    

. 

This problem is from Example 4.4 in [11], which has 

infinitely many solutions )0,,0(  , where ]1,0[ . The 

initial point 
00 , sx is randomly generated whose elements 

are in the interval (0,10). The termination criterion is 
610),( sxH . Parameters are chosen as follows: 

.9.0,6.0   The test results are listed in Table 1 by 

using different starting points. 

TABLE 1 

0x  
0s  IT CPU kx  

(9.5013,2.3114,6.0684) (6.582,3.782,2.478) 6 0.018834 (-0.0000,0.5000,-0.0000) 

(6.8128,3.7948,8.3180) (8.459,5.248,6.254) 6 0.017559 (-0.0000,0.1285,-0.0000) 

(4.4470,6.1543,7.9194) (5.791,3.896,8.412) 4 0.015375 (-0.0000,0.9998,-0.0000) 

(8.4622,5.2515,2.0265) (7.685,3.365,2.489) 5 0.017096 (-0.0000,1.0000,-0.0000) 

(3.0462,1.8965,1.9343) (4.235,1.226,2.742) 4 0.010422 (-0.0000,0.8585,-0.0000) 

Example 5.2: Consider (1), where 
3Rx  and 

33:)( RRxF   given by 
























32

3

5

)(

3
3
32

32
3
2

1

xxx

xxx

x

xF  

This problem has infinitely many solutions. The initial 

point 
00 , sx  is randomly generated. The termination 

criterion is 610),( sxH . Parameters are chosen as 

follows: .9.0,6.0    The test results are listed in Table 

2 by using different starting points. 

TABLE 2 

0x  
0s  

IT CPU FV kx  

(2,3,9) (1,1,2) 14 0.016404 7104007.2   (5.0000,1.3428,0.7643) 

(8,13,9) (3,4,2) 14 0.012882 7107533.1   (5.0000,1.3428,0.7643) 

(9,14,18) (4,17,12) 16 0.014060 7102517.1   (5.0000,1.2027,0.7944) 

(11,7,8) (6,9,13) 14 0.015661 7108667.2   (5.0000,1.3428,0.7643) 

(5,7,3) (4.9,3) 12 0.023225 7106498.4   (5.0000,1.2027,0.7944) 



COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(1) 47-51 Su Ke, Yang Dan 

51 
Mathematical and Computer Modelling 

Example 5.3: Consider (1), where 
4Rx  and 

44:)( RRxF   given by 































3
44

3
332

3
3
22

3
1

2

32

3

8

)(

xx

xxx

xxx

x

xF  

This problem is from Example 1 in [12]. The initial point 
00 , sx select the following. The termination criterion is 

410),( sxH . Parameters are chosen as follows: 

.6.0,8.0   The test results are listed in Table 3 by 

using different starting points. 

TABLE 3 

0x  
0s  

IT CPU FV kx  

(3,1,1,1) (1,2,2,5) 5 0.033747 52.4217 10  
(2.0000,-0.0000,1.0000,0.0000) 

(3,1,2,1) (1,2,6,2) 5 0.014731 65.8588 10  
(2.0000,-0.0000,1.0000,0.0000) 

(1,1,2,1) (1,2,5,1) 5 0.016660 6108160.6   
(2.0000,-0.0000,1.0000,0.0000) 

(2,1,1,1) (1,1,4,2) 5 0.026659 5107528.2   
(2.0000,-0.0000,1.0000,0.0000) 
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