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Abstract 

The inherent characteristics of RFID device and the environmental noise cause the uncertainty of RFID raw data and, in the RFID 

event detection, decrease accuracy of the query results. In this paper, the recognition model of RFID reader is defined and, by using 

the maximum entropy method, 3-state recognition model in this recognition model has been proved to have the optimal performance. 

Using Bayesian principle, the posterior probability distribution of parameters to be estimated can be got from the condition likelihood 

observed and prior distribution of unknown parameters. Based on adaptive sampler, a Markov Chain Monte Carlo (MCMC) simulation 

is proposed to do data cleaning on the redundant data from RFID multi-reader. The simulation test results, carried on a large number 
of simulation data, verify the accuracy and efficiency of the proposed data cleaning algorithm. 

Keywords: RFID, data redundancy, data cleaning, Bayesian principle, Markova chain Monte Carlo (MCMC) 

 

1 Introduction 

 

Radio Frequency Identification (RFID) technology is 

defined as a data collection technology that uses electronic 

tags for storing data [1]. The tag, also known as an 

"electronic label," "transponder" or "code plate," is made 

up of an RFID chip attached to an antenna. Transmitting 

in the kilohertz, megahertz and gigahertz ranges, tags may 

be battery-powered or derive their power from the RF 

waves coming from the reader. RFID technology does data 

communication between readers and electronic tags 

mainly by radio frequency signals, to detect the logical 

position of the object affixed with RFID tags. RFID 

technology has been used in Business application, such as 

the domain like supply chain management, product 

pipeline tracing, etc., and has developed rapidly.  

Reference [2] discusses how the RFID technology is 

used in Taiwan logistics industry. Since June 2003, mass 

consuming markets had demonstrated a significant shift 

toward RFID technology. This has occurred not only 

because of RFID mandates imposed by Wal-Mart and 

other stores, but also the widely used of RFID by 

government organizations. Its use has the potential to 

affect an extremely wide spectrum of the population, from 

technology adopters to vendors, integrators, and users [3]. 

According to a new report RFID production is to increase 

25-fold in four years, buoyed on by the scramble by 

pharmaceutical manufacturers to comply with the new 

RFID certification program, which aims to synchronize the 

industry's transition to RFID technology [4]. In Taiwan, 

government departments, the medical and pharmaceutical 

sectors, and private businesses have followed the RFID 
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trend to take advantage of this new technology to enhance 

their standard operation processes. 

Constructing an intelligent traffic monitoring system 

firstly depends on automatic identification for vehicles. At 

present, automatic identification technology based on 

image and vehicle license plate is going to fall in the trap 

due to its low recognition rate and affection by adverse 

weather. Thus it is necessary to apply new technologies to 

solve this problem, and technologies based on Internet of 

Things provide a new approach for it. In [5], the author 

explored this issue and proposed a feasible scheme. At 

first, they took global unique EPC code as identity 

identification of vehicles in stead of vehicle license plate 

and utilized RFID reader to read EPC code by RF 

electromagnetic wave, which completely solved the 

problem of no all-weather operations. Secondly, they 

obtained positioning information of vehicles by using GPS 

technology. Thirdly, because GPRS provides high-speed 

wireless IP services for mobile users, fully supports the 

TCP/IP, they took wireless GPRS scheme to transmit data 

of mobile objects. The realization of automatic detection 

and transmission of data provided a fundamental guarantee 

for constructing an intelligent traffic monitoring system. 

And then, they designed and discussed in turn its network 

architecture, data flow analysis, hardware logic structure, 

software flow, as well as its intelligent decision-making 

module. Research and design show that it is feasible and 

inexpensive to construct an intelligent traffic monitoring 

system based on Internet of Things, and the intelligent 

traffic monitoring system based on Internet of Things has 

a number of advantages such low cost, high reliability, 

never affected by adverse weather, all weather operations 

etc. Therefore, it will have a broad applying perspective. 
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In [6], an object search solution for the Internet of 

Things (IoT) is proposed. It first differentiates localization 

and searching. Localization is to calculate an object's 

current location. Searching is to return a set of locations 

where a target object could be. It is possible that the 

locations of the returned set are not contiguous. Searching 

accuracy can be improved if the number of the returned 

locations is small. Even though localization technique is 

applicable to searching applications, a simpler and easier 

solution will attract more enterprise users. In [6], based on 

a concept called location signature, defined by a set of 

reference tags, an object searching method named 

Location Signature Search (LSS) is proposed. The study of 

LSS shows that the searching accuracy can be very high if 

a location signature is not shared by too many locations. 

Since location signatures are affected by the deployment 

of the reference tags, trade-off between searching accuracy 

and implementation cost is achievable. A real world 

experiment is conducted in this research. The results show 

that LSS indeed is a practical method for object searching 

applications. 

The most notable is that the world's largest retailer 

Wal-Mart has installed inventory management system 

based on RFID in its warehouse and distribution center, 

and it requires all the top 100 suppliers of it to install UHF 

RFID tags in tray in order to improve efficiency and do 

tracing. But, the problem often encountered in practice is 

that the raw data collected by RFID readers is inherently 

unreliable [7]. So, middleware system is responsible to 

correct the raw data. Currently, most methods used to clean 

RFID raw data are concentrated in smoothing the data read 

by a group of readers. These methods suffer from 

limitations of three aspects: 

Data redundancy. The validity of many algorithms 

depends on the assumption that the label object is read by 

one and only one reader at a time. However, in real 

application scenarios, spatial redundancy and temporal 

redundancy are ubiquitous. 

Dynamic association. In practical applications, many 

objects do not remain relatively static, i.e. having a certain 

dynamic. This lead to the result that the label always 

belongs to not a certain reader but a different reader while 

it shuttles between different readers, thus, showing a 

certain dynamic. 

Priori knowledge. The priori knowledge of object 

affixed with electronic tag and RFID reader (such as 

misreading rate and deployment of RFID readers) will help 

us reduce the uncertainty of the data read. However, most 

existing algorithms do not make good use of this priori 

information. 

In order to solve the above problems, based on real 

RFID application scenario, a Bayesian probability 

cleaning algorithm for multi-reader RFID redundant data 

is proposed in this paper. 

By modelling effective recognition model and the 

effectiveness of reader recognition model, an AM-MCMC 

sampling algorithm is designed to do cleaning on RFID 

raw data effectively. During the evolutionary progress, 

AM-MCMC sampling algorithm can adaptively adjust the 

covariance matrix, thus greatly improving the convergence 

rate. The model proposed in this paper can take effectively 

advantage of Bayesian principle to obtain posterior 

probability distribution of the parameters to be estimated 

from the condition likelihood observed and the prior 

distribution of unknown parameters in order to improve 

the accuracy of the cleaning. The main contribution of this 

paper is as follows: 

1) The probability calculation model is proposed based 

on Bayesian inference to obtain posterior probability 

distribution of the parameters to be estimated from the 

condition likelihood observed and the prior distribution of 

unknown parameters in order to infer the position of the 

detected object. 

2) Based on the physical characteristics of the RFID 

reader, an RFID reader recognition model is proposed and 

commented by using information entropy. Further proving 

shows that 3-state mode has the best performance. 

3) Based on adaptive sampler, Markov chain Monte 

Carlo (MCMC) simulation is proposed to realize the 

algorithm doing data cleaning on RFID multi-reader 

redundant data. 

4) By building a real experiment platform to get real 

data set, using a large number of simulation data to test the 

algorithm, and comparing the performance of AM-MCMC 

with the one of MH-LC, the efficiency and effectiveness 

of the proposed method is proved. 

 

2 Related work 

 

RFID data management has gotten more and more 

attention which is mainly concentrated in data-centric 

management modelling and event-centric high effective 

detection. Some progress has been made in RFID data 

cleaning research. 

In [8], Gonzalez et al. use path information to compress 

redundant readings in RFID data warehouse. However, 

this method does not apply to online real-time RFID 

redundant data cleaning. Reference [9] proposed a data 

cleaning technology based on pipeline framework, a data 

cleaning strategy to assure flow quality, which select 

different steps for different types of dirty data such as 

missed reading and multiple reading. 

Generally, RFID complex event detection is executed 

over cleaned data stream. However, RFID data cleaning is 

always a simple process which will cost much system 

resources. Obviously, event detection after data cleaning 

will be inefficient due to twice scan of the event streams 

[10]. To tackle this problem, event detection is running 

directly over raw RFID streams and the stream is cleaned 

during event detection. A framework of the clean-event 

processing integration method is designed. Extensive 

experiments verify soundness and effectiveness of the 

proposed methods. 

Although [10] can process raw data directly by SASE, 

this method is not based on mathematical theory, hence, 

mathematical model is not proposed. 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 260-269 Lu Yinju, Shan Guoquan 

262 

 

SMURF algorithm [9], based on statistical sampling 

theory, is proposed by University of California, Berkeley, 

on behalf of sliding window smoothing filter technology. 

This algorithm adaptively adjusts window size to fill the 

missed data according to statistical features of flow data. 

However, this probability model is limited to do 

aggregation cleaning on many tags on given location and 

it does not consider the situation that there are multiple 

readers detecting in space. 

Although [11] has discussed problems such as multiple 

reading, missed reading, and disorder, this method applies 

only to single-reader detection. This paper will deal with 

multiple reader problems. Reference [12] uses set theory 

and method based on Bayesian derivation to deal problems 

that existing techniques for cleaning can not accurately 

restore data source information (i.e. positional 

information). However, these two methods rely too much 

on the reader deployment topology. 

In summary, in this paper, a new cleaning algorithm 

adaptive metropolis Markov Chain Monte Carlo (AM-

MCMC), is proposed, which is based on Bayesian 

principle, can process multi-reader reading data, take the 

constraints into account, and does not rely much on reader 

deployment topology. 

 

3 Description of the problem 

 

3.1 SCENE ABSTRACT 

 

Some previous RFID data cleaning methods make 

inference totally depending on statistical features of RFID 

original data set. How to find a way to fully take advantage 

of the priori knowledge of reader and environment and 

deployment topology lies on whether a RFID application 

scene with general features can be abstracted from the 

problem. This paper set logistics warehouse as background 

to explain the problem. 

Figure 1 is a typical RFID-based logistics and 

warehousing scene abstract. In this scenario space model 

abstraction, the warehouse target range is divided into six 

business location regions, location 1-6, respectively, in 

each center of the region, equipped with an RFID reader, 

namely 61 ,, RR  . The scenario has significant spatial 

redundancy; the spatial overlap of the reader recognition 

region causes duplicate reading, which an object is in the 

identification range of multiple readers. For example, an 

object is identified by the reader both in position 2 and 

position 3, which makes determining the exact location of 

the object very difficult. Since the object, at the same time, 

can not appear in a plurality of regions, at least one reading 

belongs to spatial redundancy reading. 

 

RFID reader

position 1

R1 R2 R3 R4 R5 R6

position 2 position 3 position 4 position 5 position 6

primary 

recognition region

secondary 

recognition region

 
FIGURE 1 Abstract scene for redundant data 

 

3.2 BASIC CONCEPT 

 

Without loss of generality, suppose that there are m  

regions and n  objects in our monitoring environment. Let 

iO  be the object with ID i  and let ih  be position random 

variable of object iO (i.e. ID of the region that iO  belongs 

to). For example, 101 h  means object 1O  is in region 10. 

So, the possible distribution of the n  objects in m  regions 

can be expressed as random variable Ĥ , and 

},,,{ˆ
21 nhhhH  . For the reader in region j , RFID label 

raw data received by it from object iO  is denoted by ijz . 

For m  regions and n  objects, the raw data matrix from 

m readers is described as an nXm  matrix ][ ijzZ  .

)|ˆ( ZHpost  represents posterior probability of positional 

vector Ĥ  in raw data Z . )|( iji hzpost  represents the 

value ijz  of object iO  reported by the reader in region j  

when object iO  appears in region ih . )( ihp  represents the 

priori probability that object iO  appears in region ih . 

The AM-MCMC cleaning algorithm for multi-reader 

RFID redundant data needs take full advantage of the 

location where these redundant readings come from and 

their characteristics. Some important concepts are defined 

as follows: 

Definition 1 RFID Data Structure. The data structure of 

RFID raw data is a triple )( ,TimeStampEPC,Reader , 

which means the electronic tag with encoding EPC  

obtained by the reader with number Reader  at time 

TimeStamp . EPC is the encoding of electronic tag, 

Reader is the number of reader, and TimeStamp  is 

timestamp. 

Definition 2 Data Element. The reader detects and reports 

data in its detection range. The matrix R  is used to 

express the raw data acquired by readers in m  regions 

from n  monitored objects. The matrix elements ijr  

indicates whether the reader in position j  has read tag .iO  

0ijr  means that the reader in position j  has not read tag 

iO ,while 1ijr means that the reader in position j  has 

read tag iO . 

Definition 3 Reader Correlation Model. Let iR denote the 

detection range of reader i , where i is the EPC  coding of 
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reader. n  readers are deployed in a space, the spatial 

correlation of two reader is defined as 

jijiRR RRRR
ji

 / . When 0
jiRR , i.e. 

)( jiRR ji   , the reader iR  and jR  is called 

mutually exclusive, otherwise is called compatible. 

Definition 4: Data Redundancy. There is two types of data 

redundancies in RFID-related applications. One means 

that one marked object is recognized by multiple readers 

lying in its adjacent region and the other means that during 

a continuous time, a reader identifies an object multiple 

times, which happens only in the same position. For 

instance, 22z  and 23z  can not both equal to 1 at the same 

time because object 2 can not appear in position 2 and 

position 3 at the same time. 

Definition 5: Priori Knowledge. When the priori 

knowledge, such as the physical characteristics of readers 

and tags, the reader misreading rate and deployment of 

readers, and the mapping between readers and business 

locations, is completely in conjunction with reading data, 

this is very valuable for data cleaning. For example, if the 

reader responsible for monitoring the position 3 has cross 

recognition region with reader responsible for monitoring 

the position 4, position 4 is secondary recognition region 

of reader 3R , and, at the same time, is primary recognition 

region of reader 4R . 

 

4 Redundant data cleaning algorithms 

 

4.1 BAYESIAN INFERENCE METHOD 

 

Bayes theorem provides a direct method for calculating 

probabilities [13]. It is the foundation of Bayesian learning 

methods. More precisely, Bayes theorem provides a way 

to calculate the probability of a hypothesis based on its 

prior probability, the probabilities of observing various 

data given the hypothesis, and the observed data itself. 

To define Bayes theorem precisely, let us first 

introduce a little notation. We shall write )(hP  to denote 

the initial probability that hypothesis h  holds, before we 

have observed the training data. )(hP  is often called the 

prior probability of h  and may reflect any background 

knowledge we have about the chance that h  is a correct 

hypothesis. If we have no such prior knowledge, then we 

might simply assign the same prior probability to each 

candidate hypothesis. Similarly, we will write )(DP  to 

denote the prior probability that training data D  will be 

observed (i.e., the probability of D  given no knowledge 

about which hypothesis holds). Next, we will write 

)|( hDP  to denote the probability of observing data D  

given some world in which hypothesis h  holds. More 

generally, we write )|( yxP  to denote the probability of 

x  given y . In this section, we are interested in the 

probability )|( DhP  that h  holds given the observed 

training data D . )|( DhP  is called the posterior 

probability of h , because it reflects our confidence that h  

holds after we have seen the training data D . Notice the 

posterior probability )|( DhP  reflects the influence of the 

training data D , in contrast to the prior probability )(hP , 

which is independent of D .  

Bayes theorem is the cornerstone of Bayesian learning 

methods because it provides a way to calculate the 

posterior probability )|( DhP , from the prior probability

)(hP , together with )(DP  and )|( hDP . 

Bayes theorem: 

)(

)()|(
)|(

DP

hPhDP
DhP  . (1) 

As one might intuitively expect, )|( DhP  increases 

with )(hP  and with )|( hDP  according to Bayes 

theorem. It is also reasonable to see that )|( DhP  

decreases as )(DP  increases, because the more probable 

it is that D  will be observed independent of h , the less 

evidence D  provides in support of h . 

In many learning scenarios, the learner considers some 

set of candidate hypotheses H  and is interested in finding 

the most probable hypothesis Hh  given the observed 

data D  (or at least one of the maximally probable if there 

are several). Any such maximally probable hypothesis is 

called a maximum a posteriori (MAP) hypothesis. We can 

determine the MAP hypotheses by using Bayes theorem to 

calculate the posterior probability of each candidate 

hypothesis. More precisely, we will say that MAPh  is a 

MAP hypothesis provided 

).()|(maxarg

)(

)()|(
maxarg)|(maxarg

hPhDP

DP

hPhDP
DhPh

Hh

HhHh
MAP







 (2) 

Notice in the final step above we dropped the term 

)(DP  because it is a constant independent of h . 

In some cases, we will assume that every hypothesis in 

H  is equally probable a priori ( )()( ji hPhP   for all ih  

and jh in H ). In this case we can further simplify 

Equation (2) and need only consider the term )|( hDP  to 

find the most probable hypothesis. )|( hDP  is often called 

the likelihood of the data D  given h , and any hypothesis 

that maximizes )|( hDP  is called a maximum likelihood 

(ML) hypothesis, MLh . 

)|(maxarg hDPh
Hh

ML


 . (3) 

From above we introduced Bayes theorem by referring 

to the data D  as training examples of some target function 

and referring to H  as the space of candidate target 

functions. In fact, Bayes theorem is much more general 

than suggested by this discussion. It can be applied equally 

well to any set H  of mutually exclusive propositions 
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whose probabilities sum to one (e.g., "the sky is blue," and 

"the sky is not blue"). In this section, we will at times 

consider cases where H  is a hypothesis space containing 

possible target functions and the data D  are training 

examples. At other times we will consider cases where H  

is some other set of mutually exclusive propositions, and 
D  is some other kind of data. In the remaining part of this 

section, we will show how to apply Bayes theorem as the 

fundament of our redundant data cleaning method. 

Bayesian inference evaluates the probability of 

hypothesis ( x ) based on observed values ( y ). It means 

that the posterior probability is proportional to the product 

of probability and priori probability, i.e.

)()|()|( xpxypyxp  . By definition, Bayesian inference 

is described as shown in Equation (4), wherein, Z  

represents the assumptions of original data. So, the 

posterior probability of positional vector H  is expressed 

as )|ˆ( ZHpost . 

),,,(,,,

|,,)|ˆ(

2121
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111

1

111

21

nn

nmn

m

nmn

m

n

hhhphhh

zz

zz
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zz
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hhhpostZHpost
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
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

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





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






















































. (4) 

As the arbitration protocol can effectively prevent 

reader collision and tag collision, assuming that each 

reader can individually identify label of the different 

objects, results in Equation (5) is reached. Because of 

using AM-MCMC to consider the constraints, we assume 

that each ih  is independent from each other and 

recognition range of same object from each reader is 

independent. Then the prior distribution of each object 

does not depend on the one of other objects. Thus, we 

obtain Equation (6). Let   be a constant in Equation (6), 

Equation (7) is reached. 

),,,,(),,,,,(

)|ˆ(

212121 n

i

nniii hhhphhhzzzp

ZHpost

 




 (5) 

),()()()(

)|ˆ(

21  



j

j

i

iimiiii hphzphzphzp

ZHpost

  (6) 

),()()()(

)|ˆ(

21  



j

j

i

iimiiii hphzphzphzp

ZHpost

  (7) 

 

4.2 READER RECOGNITION MODEL 

 

Three-state recognition model is proposed, that is the 

reader can recognize only its own region and two adjacent 

regions. In Figure 1, according to this model and based on 

location, the reader has three location-based target regions: 

the main recognition region, sub-recognition region and 

the 0 recognition region, corresponding to the region 

having the same location as the reader, the region adjacent 

to the reader, and the region being not able to be 

recognized, respectively. The assessment of likelihood of 

3-state model is described in Equation (8). 















otherwise

jjjh

jh

r

r

hzp i

i

minor

major

iij }1,,1{

0

)|1( , (8) 

where majorr  means reading rate of main recognition region 

of the reader, minorr  means reading rate of sub-recognition 

region of the reader, 0 means beyond the range of the 

reader identification.  

By using 3-state recognition model, not only is 

duplicate reading date combined, but also it is possible to 

distinguish between a region and its adjacent regions of all, 

because they have their own different reading rates. 

Specifically, if the object iO is in the area j , not only ijz , 

but also )1( jiz  and )1( jiz  should have considerable 

opportunity being 1. 

 

4.3 RECOGNITION MODEL ENTROPY ANALYSIS 

 

Entropy is a measure commonly used in information 

theory, which characterizes the impurity of an arbitrary 

collection of examples [14]. In information theory, another 

commonly used statistical property, information gain, 

which measures how well a given attribute separates the 

training examples according to their target classification, 

can be defined from entropy. 

Given a collection S , containing positive and negative 

examples of some target concept, the entropy of S  

relative to this Boolean classification is 

  ppppSEntropy 22 loglog)( , (9) 

where p  is the proportion of positive examples in S and 

p  is the proportion of negative examples in S . In all 

calculations involving entropy we define 0log0 to be 0. 

One interpretation of entropy from information theory is 

that it specifies the minimum number of bits of information 

needed to encode the classification of an arbitrary member 

of S  (i.e., a member of S  drawn at random with uniform 

probability). For example, if p , is 1, the receiver knows 

the drawn example will be positive, so no message need be 

sent, and the entropy is zero. On the other hand, if p  is 

0.5, one bit is required to indicate whether the drawn 

example is positive or negative. If p  is 0.8, then a 

collection of messages can be encoded using on average 

less than 1 bit per message by assigning shorter codes to 

collections of positive examples and longer codes to less 

likely negative examples. 
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Thus far we have discussed entropy in the special case 

where the target classification is Boolean. More generally, 

if the target attribute can take on c  different values, then 

the entropy of S  relative to this c-wise classification is 

defined as: 





c

i

ippSEntropy
i

1

2log)( , (10) 

where ip  is the proportion of S  belonging to class i. Note 

the logarithm is still base 2 because entropy is a measure 

of the expected encoding length measured in bits. Note 

also that if the target attribute can take on c  possible 

values, the entropy can be as large as c2log . 

In the remaining part of this section, we will show how 

to apply entropy into our method to analyze the recognition 

model. 

After invalid system state is removed using data 

cleaning method, the performance of a system can be 

measured by entropy. Let the random variable L  be the 

true position of the object i, the a priori probability is 

assumed to be a uniform distribution, and let x be the 

reading rate in the primary recognition region, the reading 

rate in the secondary recognition region is expressed as 

2/x . Thus, according to the right side of Equation (7), the 

probability distribution of L is as follows: 


















otherwise

jjlx

jlx

lLp
xx

xx

0

}1,1{)1)(1(

)1()1(

)(
22

22





. (11) 

Of which,  represents normalization constants,   

represents the priori probability of Equation (7). This gives 

the entropy of a probability distribution L : 

))1)(1(ln()1)(1(

))1(ln()1(

))1)(1(ln()1)(1()(

2222

2

2

2

2

2222







xxxx

xx

xxxx

xx

xx

xxLH







. (12) 

Since the sum of all probability is 1, we can get 

Equation (13): 

)2)(1(

1

2

3

2

xx
x 

 . (13) 

Combining Equations (12) and (13), we get: 

x

x

x

x

x

x

x

x
LH

34

2
ln

34

2

34

1
ln

34

1
2)(



















 . (14) 

By identifying the relationship curve between entropy 

and the number of states in the model, we obtain that 3-

state recognition model can minimize entropy of the 

system, and maximize system performance. With the 

reading rate increases, the entropy will decrease. This 

indicates that the system contains more readers, while less 

uncertainty. 

Theorem On the premise that priori knowledge and 

constraints are meet, the estimate of the location parameter 

obtained by 3-state recognition model can make the system 

performance better than the estimate of the location 

parameter obtained by other state recognition model can.  

Proof: Because sum of probability of all 32 n  regions of 

n-state model is 1, that is: 
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By Equations (11) and (15), we obtain the entropy of 

n-state model: 
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Let 


 
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nxg k  , then entropy 

function is: 
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The entropy function )(LH  of n-state model is 

incremented with n . Suppose 95.0x , if 2n  then 

098.1|)( 2nLH , and if 3n  then 395.0|)( 3nLH . 

Therefore, if and only if 3n , the entropy is minimum, 

and the accuracy of parameter estimation is highest. 

QED. 

 

4.4 AM-MCMC ALGORITHM 

 

By constructing Markov process, which satisfying 

conditions of ergodicity, normalization and stationary, 

MCMC method [15] can obtain a non-periodic irreducible 

Markov chain, whose stationary distribution and limit 

distribution is probability distribution the target. When a 

Markov chain converges after a long enough warm-up 

period, its sample approximate the one of target probability 
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distribution, which can be used to estimate the target 

distribution. 

The key of MCMC is how to choose the recommended 

distribution (transfer density) to make sampling more 

efficient. Commonly used sampling algorithms include 

Metropolis-Hastings algorithm, Gibbs sampling [16], and 

Adaptive Metropolis(AM) algorithm [17], etc. AM 

(Adaptive Metropolis) algorithm is an improved MCMC 

sampler proposed by Haafio in 2001. Compared with 

traditional MH and Gibbs sampling, AM no longer needs 

to determine the recommended distribution of variables in 

advance, however, is based on the covariance of the initial 

sample. The recommended distribution is defined as a 

multidimensional normal form of the parameter space; the 

initial covariance can be determined by priori information. 

In the sampling process, the recommended density (i.e., 

the covariance matrix) is adjusted adaptively based on the 

historical sampling information of Markov chain, and 

parallel computing can be adopted to improve the 

convergence speed. In this paper, this algorithm is adopted 

to do sampling. 

Let H  be random vector of object position, whose 

posterior distribution is denoted by )|ˆ( ZHpost  and 

assuming that 1
ˆ

tH  is directly leading state of state tĤ  in 

Markov chain. First, by AM-MCMC algorithm, the 

proposal sample qĤ  is from proposal distribution 

)ˆ|ˆ( 1tq HHq , that is, qĤ  is the random deviations of 

1
ˆ

tH . This paper uses the uniform proposal distribution 

and the proposal sample 'Ĥ is expressed as qt HH ˆˆ
1  . 

Then, AM-MCMC treats 'Ĥ  as next state tĤ  with the 

probability )|ˆ(/)|'ˆ( 1 ZHpostZHpost t . 

Reference [17] discusses the adaptive metropolis 

algorithm. Suppose that at time 1-t  we have sampled the 

states 110 ,...,, tXXX , where 0X  is the initial state. Then a 

candidate point Y  is sampled from the (asymptotically 

symmetric) proposal distribution ),...,,|( 110  tt XXXq , 

which now may depend on the whole history 

),...,,( 110 tXXX . The candidate point Y  is accepted with 

probability: 













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)(
,1min),(

1

1

t

t
X
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YX




 , (18) 

where we set YX t  , and otherwise 1 tt XX . Observe 

that the chosen probability for the acceptance resembles 

the familiar acceptance probability of the Metropolis 

algorithm. However, here the choice for the acceptance 

probability is not based on symmetry (reversibility) 

conditions since these cannot be satisfied in our case-the 

corresponding stochastic chain is no longer Markovian. 

For this reason we have to study the exactness of the 

simulation separately.  

The proposal distribution ),...,,|( 110  tt XXXq  

employed in the AM algorithm is a Gaussian distribution 

with mean at the current point 1tX  and covariance 

),...,( 10  ttt XXCC . Note that in the simulation only 

jumps into S  are accepted since we assume that the target 

distribution vanishes outside S . 

The crucial thing regarding the adaptation is how the 

covariance of the proposal distribution depends on the 

history of the chain. In the AM algorithm this is solved by 

setting ddtdt IsXXsC   ),...,cov( 10  after an initial 

period, where ds  is a parameter that depends only on 

dimension d  and 0  is a constant that we may choose 

very small compared to the size of S . Here dI  denotes the 

d-dimensional identity matrix. In order to start, we select 

an arbitrary, strictly positive definite, initial covariance 

0C , according to our best prior knowledge (which may be 

quite poor). We select an index 00 t  for the length of an 

initial period and define: 


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ttIsXXs
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C
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. (19) 

The covariance tC  may be viewed as a function of t  

variables from 
d  having values in uniformly positive 

definite matrices. 

Recall the definition of the empirical covariance matrix 

determined by points 
d

kxx ,,0  : 
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where  


k

i ik xkx
0

))1/(1(  and the elements 
d

ix   are 

considered as column vectors. So one obtains that in 

definition (1) in [17] for 10  tt  the covariance tC  

satisfies the recursion formula 
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. (21) 

The choice for the length of the initial segment 00 t  

is free, but the bigger it is chosen the more slowly the effect 

of the adaptation is felt. In a sense the size of 0t  reflects 

our trust in the initial covariance 0C . The role of the 

parameter   is just to ensure that tC  will not become 

singular. As a basic choice for the scaling parameter we 

have adopted the value dsd /)4.2( 2  from [18], where 

it was shown that in a certain sense this choice optimizes 
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the mixing properties of the Metropolis search in the case 

of Gaussian targets and Gaussian proposals. 

Original AM-MCMC algorithm evaluates the posterior 

distribution by Markov chain formed in the sampling 

space; however, it does not take into account the 

constraints. For integrating constraints while sampling, 

Adaptive Metropolis sampler (AM-MCMC) with position 

constraints is proposed. For AM-MCMC, each location 

region is associated with multiple variables known as 

resource descriptors, denoted by iDescriptor , which 

means the number of available capacity that location 

region i  associated with. Volume variable of object j  is 

denoted by jVolume . As long as iDescriptor  is not less 

than 0, the proposed resource allocation is feasible. 

Otherwise, we have to re-sampling until a new location 

meets all constraints. Thus, whether a position is feasible 

is summarized as monitoring the value of each descriptor. 

The relationship between them is described as 

Equation (22). 

jii VolumeDescriptorDescriptor  . (22) 

For AM-MCMC, the proposal sample is iteratively 

generated according to the number of dimensions. If the 

current allocation descriptor is less than 0, for the current 

deviation sample, the sample is judged to be unqualified 

and then abandoned. And then other value for the number 

of this dimension is chosen by resampling. As to proposal 

distribution, a random walk (Random walk) chain is 

constructed by selecting a uniform proposal distribution in 

the range of step length. 

From the foregoing, the sampling mechanism of AM 

algorithm depends on all the historical sample information 

110 ,...,, tXXX . Haario etc. prove the convergence and 

ergodicity of the algorithm. The specific sampling 

procedure of AM algorithm is as follows: 

1) Initialization, 0i ; 

2) According to the constraint by Equation(22), the 

initial state iX  is randomly generated and accepted; 

a) Calculated covariance iC using Equation (19); 

b) Recommended variable ),(~*

ii CXNX is 

generated; 

c) According to Formula (18), calculates and accepts 


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X
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


 ; 

d) Produce a uniform random number )1,0(~Uu ; 

e) If u , then accept 
*

1 XX i  , else ii XX 1 ; 

3) 1 ii ,repeat 1)-5) until the number of samples 

meets the requirement preset in advance. 

 

4.5 AM-MCMC CONVERGENCE RULE 

 

An important task of MCMC sampling study is to 

determine whether a parallel sampling sequence converges 

to the posterior distribution. In theory, AM-MCMC 

algorithm will surely converge when t . However, in 

practical application, we must determine the number of 

sampling needed by AM algorithm to converge to stable 

posterior distribution, that is, the convergence 

determination conditions are given. The convergence 

diagnostics is an important part of AM-MCMC sampling 

methods. References [19] proposed scale reduction factor 

to determine the convergence of multiple sequence. 

Calculated as: 
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, (23) 
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



k

j

j ksW
1

/ , (25) 

where, i is the evolution number of each Markov chain, 

iB  is the variance of parameters sample mean j  in the 

Markov chain, W  is the mean of parameter sample 

variance js  in the Markov chain, and   is the mean of 

j . Under normal circumstances, the scale reduction 

factor close to 1 indicates that the algorithm get to 

convergence. However, in practical application, that the 

scale reduction factor of the evolutionary sequence closes 

to 1 is more difficult to achieve. Reference [19] propose to 

take 2.1R  to determine whether multiple sequence 

sampling algorithms converge. 

 

5 Experiments 

 

5.1 EXPERIMENTAL ENVIRONMENT AND DATA 

SET 

 

Basic laboratory equipment include Invengo's XCRF-860 

RFID UHF Reader supporting EPC Gen2 

protocol/ISO18000-6C and Inlay XC-TF8029-C07. 

Experimental environment is Visual Studio 2012, running 

on Pentium Core i7 CPU of 3.4GHZ, 8GB RAM, 2TB hard 

drive as well as Window 7 operating system. 

Simulation experiments randomly generate 

distribution matrix with real distribution effect matrix by 

real matrix generator. Noise matrix generator provides 

noise matrix similar to RFID raw data according to the 

same format. AM-MCMC and MH-LC module 

reconstruct distribution of each instance using the input 

noise matrix. Simulator generates synthetic RFID raw data 

with duplicate reading according to the physical 

characteristics of the RFID reader. The main parameters 

used in the experiments are shown below. 

The goals of the experiment are described below: 

1) Evaluate sampling efficiency of AM-MCMC and 

MH-LC by the calculation of reconstruction time. 
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2) Use the K-L divergence to evaluate sampling 

accuracy of AM-MCMC and MH-LC, respectively. 

3) Use artificial noise to evaluate the performance of 

AM-MCMC and MH-LC, respectively. 

 

5.2 EXPERIMANTAL RESULTS AND ANALYSIS 

 

5.2.1 Reconstruction efficiency 

 

AM-MCMC and MH-LC performance is verified in this 

experiment. Compared with the MH-LC, average 

sampling time of AM-MCMC reduce significantly with 

the increase of the number of qualified samples, as shown 

in Figure 2 For example, for 5000 qualified samples, AM-

MCMC sampling spends 14.01 seconds, while the MH-LC 

sampling time is 200.18 seconds. This is because the AM-

MCMC takes advantage of the current qualified sample to 

generate next qualified sample. Therefore, AM-MCMC 

spends less time than the MH-LC does to generate the 

same number of qualified samples. 

 
FIGURE 2 AM-MCMC versus MH-LC on sampling time 

 

5.2.2 Reconstruction accuracy 

 

In this experiment, a different number of qualified samples 

are taken to study how different number of samples affects 

reconstruction accuracy. First, we increase the number of 

qualified samples from 500 to 9000 to study how the AM-

MCMC and MH-LC perform at the respect of construction 

accuracy, respectively. Here, the reading rate in the main 

recognition range is assumed to be 96%. As shown in 

Figure 3, as the number of qualified samples increases, K-

L divergence values of the two methods are all remain 

reduced. However, the accuracy of AM-MCMC is always 

higher than MH-LC's. Especially, when we have drew 500 

qualified samples, the K-L divergence value of AM-

MCMC is 1.52 while the one of the MH-LC is 3.75. When 

we have picked up the 9000 qualified samples, the K-L 

divergence of AM-MCMC significantly reduces to 0.51, 

while the one of MH-LC is 2.52. 

 
FIGURE 3 The impact of the number of qualified samples 

 

5.2.3 How sample redundancy effects cleaning accuracy 

 

In this experiment, different redundancies of qualified 

samples are taken to study how different redundancy of 

samples affects reconstruction accuracy. First, we increase 

the redundancy of qualified samples from 0.325 to 0.5 to 

study how the AM-MCMC and MH-LC perform at the 

respect of sample redundancy, respectively. As shown in 

Figure 4, as the redundancy of qualified samples increases, 

K-L divergence values of the two methods are all keep 

decreasing. However, the accuracy of AM-MCMC is 

always higher than MH-LC's. Especially, when the 

redundancy of qualified samples is 0.325, the K-L 

divergence value of AM-MCMC is 3.21 while the one of 

the MH-LC is 4.40. When the redundancy of qualified 

samples is 0.5 the K-L divergence of AM-MCMC drops to 

0.87, while the one of MH-LC is 2.41. 

 
FIGURE 4 How sample redundancy effects cleaning accuracy 

 

6 Conclusions 

 

RFID technology has broad application prospects, but also 

has raised new challenges on data management. Due to 

RFID inherent characteristics, data cleaning problem is an 

important issue to consider in RFID data management. In 

this paper, for the uncertainty of RFID raw data, by 

defining the recognition model of RFID reader, adopting 

Bayesian principle to get the posterior probability 
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distribution of parameters to be estimated from the 

condition likelihood observed and prior distribution of 

unknown parameters, Bayesian probability cleaning 

algorithm is designed to do data cleaning on the redundant 

data from RFID multi-reader based on adaptive sampler. 

The simulation test results, carried on a large number of 

simulation data, verify the accuracy and efficiency of the 

proposed data cleaning algorithm. 
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