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Abstract 

Here we propose a new method for calculating the pitch Response Amplitude Operators (RAOs) for a Tension Leg Platform (TLP) wind 
turbine. The traditional method is limited for finding the stability of a body in water; the traditional method is also limited regarding the 
development requirement of worldwide floating offshore wind energy. The TLP is modeled and meshed in GID software, and a time 
domain analysis at a particular wind speed was carried out using FEM analysis on an unstructured mesh (UM-FEM). The calculations of 
mass and hydrodynamic matrices are discussed in detail. Also, translation of these matrices from the origin, which is typically on the free 
surface of a body of water, to the center of gravity for the platform is discussed in detail. Finally, a linear analysis of a mooring system is 
discussed, and pitch RAOs were calculated and validated against prior data. The result from the proposed new method closely fits the 
NREL results and reaches the same conclusion as other studies. This implies that this computation process is correct and that this new 
method can be used with low error and in conjunction with other methods for offshore wind energy generation applications. 
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1 Introduction  

In order to find variations in the stability of an object, it is 
necessary to calculate body motions. Several methods can 
be implemented to determine the variation in stability [1, 14], 
which include simplified and advanced methods. Simplified 
methods include strip theory based on the use of potential 
theory, whereas advanced methods are based on the use of 
computational fluid dynamic (CFD) methods. In strip theory, 
the object under consideration is divided into vertical two-
dimensional (2D) strips or sections, then the forces, mo-
ments, and hydrodynamic coefficients on each strip are cal-
culated followed by a summation of the results on each strip 
to obtain the final effect [1]. Panel methods [2] can also be 
implemented in lieu of the strip theory method, in which the 
object is divided into small panels rather than vertical sec-
tions of mesh. When Navier-Stokes equations are solved, as 
is the cases in typical CFD implementations, it is possible to 
catch some viscous effects along with non-linear effects 
such as green water on deck and bottom slamming. Nowa-
days, CFD implementation has become increasingly popu-
lar; however, strip theory is still commonplace in comercial 
software implementations due to the speed and accuracy 
such as Wave Analysis MIT (WAMIT) [2]. Computational 
costs (CPU-time and hardware cost) are a major disadvan-
tage of CFD implementation. Here, a new time domain sol-
ver based on finite element formulation based on an unstruc-
tured mesh (UM-FEM), which uses the potential theory 
along with Stokes perturbation approximation is proposed. 
This method was first used in a study by Borja [3] which 
introduces UM-FEM and compares the results with 
analytical solutions It is in agreement with other results and 
induces the CPU time, showing the potential of this method. 
In this study, we introduce UN-FEM into a floating wind 
turbine field and to use it to obtain the pitch RAO value. 

                                                                                 
* Corresponding author e-mail: phdwhf@163.com 

A floating wind turbine field is different than other off-
shoring structures. The physical model used to demonstrate 
the implementation of the proposed time domain solver can 
be subdivided into three major components: the wind tur-
bine, the floating platform, and the mooring system. In the 
present analysis, the floating platform and the mooring sys-
tem were modeled in GID software which is a universal pre- 
and postprocessor for numerical simulations in field of engi-
neering [4]. The time domain analysis was carried out at a 
constant wind speed using appropriate mass, damping, and 
stiffness matrices for the wind turbine [5, 6]. The combina-
tion of the wind turbine and floating platform were assumed 
to undergo rigid body motion in the standard modes of 
motion. These were based on wave-body interaction theory, 
as well as translation and rotational motions along the x-, y-, 
and z-axes. Modes 1 to 3 were translational modes of surge, 
sway, and heave; each representing translation along the x-, 
y-, and z-axes, respectively. Modes 4 to 6 are rotational 
modes of roll, pitch, and yaw; each representing rotation 
about the x-, y-, and z-axes, respectively [7]. 

1.1 EQUATIONS OF MOTION 

The equations governing the rigid-body motion of a floating 
object consist of the standard Newtonian equations of 
motion. The six modes of motion are described and 
summarized in matrix form as [8]: 
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       
.. .

total total totalM B t C t X       , (1) 

where Madded is the added mass matrix; MWT is the mass 

matrix of the wind turbine at a constant wind speed; Mstructure 

is the mass matrix of the platform; Bstructure is the damping 

matrix of the platform; BWT is the damping matrix of the 

wind turbine; CWT is the stiffness matrix of the wind turbine; 

Cstructure is the stiffness matrix of the platform; Cmooring is the 

stiffness matrix of the mooring system;  ,  , and  are 

acceleration, velocity, and displacement of the system. 
To solve the equations of motion, two methods are used: 

the frequency domain and the time domain. In the frequency 
domain, the amplitude of the motion was calculated over a 
range of frequencies, and in the time domain, the actual time 
history of the motion was calculated at a given frequency. 

1.2 RESPONSE AMPLITUDE OPERATORS 

A Response Amplitude Operator (RAO) is defined as the 
response of a floating structure in a given mode of motion 
to a wave of unit amplitude as a function of frequency [5]. 
The RAOs of the rotation degree are normalized by the 
platform length. The length of the platform is 9 m. It is a 
complex function and gives information related to the 
magnitude and phase of the response of the floating 
structure. The RAO for each of the six modes of motion is 
given by solving the equations of motion in the frequency 
domain. The expression is shown below: 

     2

total total totalM RAO i B RAO C RAO X       
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. (2) 

From Equation (2), it is clear that RAOs are complex in 
nature. The real and imaginary parts give the magnitude and 
the phase of the RAO. If RAO in one direction is x+iy, then 

2 2Magnitude of RAO x y  , (3) 

 arctan
y

Phaseof RAO
x

 . (4) 

2 NREL 5-MW turbine and TLP troperties 

In order to analyze and compare the date with former result, 
the baseline turbine properties are taken from the National 
Renewable Energy Laboratory (NREL), which represents a 
typical state-of-the-art multi-megawatt turbine. Many 
papers have adopted this wind turbine as baseline and easy 
to find enough information and research result we can use 
and compare [8, 9, 10, 11]. The important specifications of 
the turbine are listed in Table 1. An in-depth description of 
the turbine can be found in [12]. 

TABLE 1 Baseline turbine properties from the NREL report 

Rated power 5 MW 

Hub height 90 m 

Wind speed: 

Cut-in 3 m/s 

Rated 11.4 m/s 

Cut-out 25 m/s 

Cut-in rotor speed 6.9 rpm 

Rated rotor speed 12.1 rpm 

Over hung 5 m 

Rotor mass 110,000 kg 

Nacelle mass 240,000 kg 

Tower mass 347,460 kg 

CM location -0.2 m, 0.0 m, 64.0 m 

 
The tension leg platform used in floating wind turbines 

has been studied by Tracy at MIT [6] and Matha at the 
NREL [5]. Tracy’s thesis contains a parametric optimization 
study conducted for several different floating-platform 
concepts for NREL’s 5-MW base line wind turbine, and 
finally he show some concept models including the TLP 
model [6], which Matha referred to as the MIT-TLP model. 
At the NREL, Matha researched the MIT-TLP model and 
changed it in different tension leg spoken length. 

The properties of the TLP are taken from Tracy's 
Parametric Design of Floating Wind Turbines and are listed 
in Table 2 [6]. 

TABLE 2 Properties of MIT-TLP model [10] 

Platform diameter 18 m 

Platform draft 47.89 m 

Water depth 200 m 

Ballast at platform bottom: 

Concrete mass 8,216,000 kg 

Concrete height 12.6 m 

Average steel density 7850 kg/m3 

Average concrete density 2562.5 kg/m3 

Steel wall thickness 0.015 m 

Total displacement 12,187,000 kg 

Wind speed (constant) 11.0 m/s 

Sea state significant wave height 10.0 m 

Peak spectral wave period 17.6394 s 

The properties of the mooring system used in the present 
model are listed in Table 3 [6]. 

TABLE 3 Properties of the mooring system 

Number of mooring lines 8 

Mooring system angle 90o 

Fairlead distance from center 18 m 

Average mooring system tension per line 3931 kN 

Unstretched mooring line length 151.73 m 

Line diameter 0.127 m 

Line mass per unit length 116.03 kg/m 

Line extensional stiffness 1.5 GN 

3 Calculation matrices 

3.1 MASS PROPERTIES 

The mass matrix of any structure can be represented by 
Equation (5) shown below, 
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, (5) 

where M is the mass of the structure; xG, yG, and zG are 
coordinates for the center of gravity (CG) of the structure 
and I is the moment of inertia. The mass matrix for the 
turbine is obtained from [6] where the matrix is calculated 
with origin at the free surface of a body of water. The mass 
matrix of the turbine is as follows: 

6

0.7 0 0 0 44.3 0

0 0.7 0 44.3 0 6.6

0 0 0.7 0 6.6 0
10

0 44.3 0 3499 0 0

44.3 0 6.6 0 3560 0

0 6.6 0 513.3 0 101.2

WTM 

 
 


 
 

 
 

 
 

  

. (6) 

Theoretically, the mass matrix should be symmetric; 
however, the mass matrix of the turbine shown here in 
Equation (6) is not symmetric due to absence of the Ixz term. 
Tracy and Matha used WAMIT and fatigue, aerodynamics, 
structure, and turbulence (FAST) software to analyze the 
turbine platform assembly in different environmental states 
[5,6]. FAST software is CAE tool which was developed by 
the NREL and Oregon State University, and it is a 
comprehensive aero-elastic simulator capable of predicting 
extreme and fatigue loads of two- and three-bladed 
horizontal-axis wind turbines [8, 13]. FAST and WAMIT 
software are used to perform the analysis with the 
coordinate system at the free surface of the body of water. 
However, in the present analysis, all calculations were 
performed with the coordinate system at the CG of the 
turbine-platform assembly. Therefore, all the matrices 
obtained from Tracy's thesis must be translated to the CG 
for the assembly. 

The mass matrix of the platform can be calculated from 
Equation (6). From the platform data reported in the 
previous section, the mass of the platform including the 
ballast is 8,654,734 kg, and the CG is at (0, 0, -40.6). The 
mass matrix calculated at the center of gravity is as follows: 

6

8.6 0 0 0 0 0

0 8.6 0 0 0 0

0 0 8.6 0 0 0
10

0 0 0 453.7 0 0

0 0 0 0 453.7 0

0 0 0 0 0 362.4

platformM 

 
 
 
 

 
 
 
 
  

. (7) 

The turbine mass matrix calculated at the origin and the 
platform mass matrix calculated at CG were translated to the 
CG of the whole structure, which lies at (-0.015, 0, -32.716). 
The translation of different components of the mass matrix 
is explained below: 

Let the terms with superscript ‘tf’ refer to translated 
quantity of the turbine mass matrix, while ‘to’ refers to the 
quantity calculated at the CG of the turbine. Similarly, ‘pf’ 
is the final quantity of the platform mass matrix while ‘po’ 
is the original term. Different terms in mass matrix change 
and are discussed below. The turbine mass matrix translated 
from the origin to the CG of the structure is: 

 0 2 2tf t

xx xx T gs gsI I m y z   , (8) 

 0tf t

xy xy T gs gsI I m x y  . (9) 

The platform mass matrix translated from the CG of the 
platform to the CG of the structure is: 

    2 2
0pf p

xx xx p gs gt gs gtI I m y y z z     , (10) 

  0pf p

xy xy p gs gp gs gpI I m x x y y    , (11) 

where mT and mP are masses of turbine and platform, 

respectively, xgs, ygs, and zgs are the coordinates of the CG of 

the structure, and xgp, ygp, and zgp are the coordinates of the 

CG of the platform. The rest of the terms in the mass matrix 

are translated similarly. The terms corresponding to Mx, Mz, 

and My in the off diagonal are changed corresponding to 

changes in the coordinate axis. The summation mass matrix 

is frequency-dependent and was calculated internally by 

SeaFEM for every frequency. 

3.2 TRANSLATION OF MATRICES 

The R.H.S. term in the equation of motion is a 6×1 matrix 
containing forces and moments in the x-, y-, and z-directions. 
When the coordinate system is changed, forces are 
unchanged in the new coordinate system, but moments will 
change depending on the location of the new coordinate 
system. This change of moment can be incorporated by 
transformation of the stiffness and damping matrices. 

 
FIGURE 1 Schematic of the translation of B and C matrices 

In the Figure 1, Fx, Fy, and Fz are the forces in the 
positive x-, y-, and z-directions. Translating the coordinate 
system to CG of the structure will create additional moments 
in addition to the existing ones. These additional moments 
can be calculated directly and are listed as: 
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-

-

-

g z g y

g x g z

g y g x

Moment in x direction y F z F

Moment in y direction z F x F

Moment in z direction x F y F

 
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. (12) 

The moments in Equation (11) can be merged into the 
stiffness and damping matrices and are show in Equation 
(12). Let aij denotes the ij component of either the stiffness 
or damping matrix. Aij is the ij component of transformed 
matrix. Then, the transformation can be performed as 
follows: 

, , 1, 2,

, , 4, 2,

, , 4, 5,

4, 1,2,3,4,5,6

5, 1,2,3,4,5,6

6, 1,2,3,4,5,6

i j i j g i j g i j

i j i j g i j g i j

i j i j g i j g i j

A a y a z a for i j

A a z a x a for i j

A a x a y a for i j

 

 

 

    

    

    

. (13) 

As force components are unaffected by the change of 
coordinate system, only the bottom three rows of the 
stiffness and damping matrices are changed. 

3.3 STIFFNESS PROPERTIES 

The stiffness properties of the wind turbine are directly 
taken from [6]. The matrix is as follows: 

6

0 0 0 0.3 0.2 0

0 0 0 0.1 0.3 0.07

0 0 0 0.3 0.4 0
10

0 0 0 8.5 22.4 59.7

0 0 0 26.8 28.9 4.1

0 0 0 1.2 1.1 4.8

WTC

 
 

 
 
  

  
 

 
 

   

. (14) 

The stiffness properties of the structure include restoring 
effects of the platform. The non-zero terms in the total 
restoring matrix of the platform are as follows: 

33 pC gA , (15) 

 

 

2

44

2

55

b g

b g

C gV z z g y ds

C gV z z g x ds

 

 

  

  




, (16) 

where Aωp is the water plane area, V is the volume of the 

platform, and zb and zg are z-coordinates of buoyancy and 

CG, respectively. If only the hydrostatic force matrix is 

considered, the term ρgVzg can be omitted as this term gives 

the restoring effect due to the weight of the platform. The 

matrix given in the NREL report does not include this term 

as only hydrostatic restoring was considered. The 

corresponding values for the above terms in the present 

analysis are as follows: 

33 2558750C  , (17) 

6

44 55 2.09 10C C   . (18) 

The above values are calculated at the origin, i.e. at the 
free surface level. The translation of the restoring matrix 
from the origin to the CG of the structure can be done as 
follows: 

   03,3 3,3CGC C  

     0 03,4 3,4 y 3,4CG cgC C C   

     0 03,5 3,5 x 3,3CG cgC C C   

       2

0 0 04,4 4,4 2y 3,4 3,3CG cg gC C C y C    

     

   

0 0

0 0

4,5 4,5 y 3,5

3,4 3,3

CG cg

g cg cg

C C C

x C x y C

 

 
 

   04,6 4,6CGC C , (19) 

where CCG refers to translated matrix component to the CG 

of the structure, C0 refers to the components calculated at 

the origin, xcg, ycg, and zcg are the coordinates of the CG of 

the structure. 

3.4 LINEAR MOORING ANALYSIS  

In steady state operations, thrust forces cause a horizontal 
displacement of the platform along the x-direction. This thrust 
is resisted by a horizontal restoring force produced by the 
tethers as their fair lead position is moved from the rest 
position, which is directly above the anchor point for each 
tether. As the floater surges away from the rest position, drift 
increases with the tethers acting as rods in tension. This 
increase in drift would cause an increase in line tension. 
However, for small surge displacements, a linearization 
assumption can be made that the line tension remains constant. 
This assumption is based on the fact that the tethers will have 
a very large tension stress at rest. The drift of the platform is 
also assumed to be small for small surges. The surge and the 
sway restoring coefficients are identical due to symmetry. 
The restoring coefficient can also be obtained by setting the 
moment about the tethers anchors on the bottom of the water 
body to zero and then solving for the force, which produces a 
moment in the opposite direction to the moment resulting 
from excess buoyancy for a given displacement. For small 
displacements, the surge and sway restoring coefficients are 
given by the following equation [17]: 

11 22

tethers

tethers

F
C C

L
  , (20) 

where Ltethers is the length of the tether lines and Ftethers is the 
force in the tethers. Heave restoring forces are from both 
tether and hydrostatic effects. If the structure moves only in 
the heave direction, the tethers extend and contract. For a 
system using stiff lines for tethers, this restoring mechanism 
is much larger than the hydrostatic restoring mechanism. 
The heave restoring coefficient is given by the following 
equation: 

33

8 tethers tethers

p

tethers

E A
C gA

L
  . (21) 

The factor 8 corresponds to the number of tethers in the 
present case. Wave loading on the submerged structure 
creates pitch and roll moments on the system. Thrust on the 
rotor acting along with the moment arm of the tower creates 
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a moment about the y-axis, which also results in pitch of the 
oater. Pitch and roll restoring coefficients are similar due to 
symmetry. Pitch and roll restoring are calculated by taking 
into the account the moments produced by the lines due to 
extension and contraction, the moment due to line tension, 
the moment due to system mass, and the moment due to 
system buoyancy. For stiff lines the largest restoring 
moment is due to extension and contraction of the lines on 
the opposite sides of the axis while the moment is applied. 
The restoring coefficients can be obtained by assuming a 
small rotation at any point along the center of the tower and 
summing the moments produced. The following is a 
derivation of the roll restoring coefficient [17]. 

Base Extend Contract Buoyancy gravity tethersM M M M M M      

l gtethers Buoyancy totaF F m   

 42 sin
2 2

tethers tethers

Extend spoke spoke

tethers

E A d d
M L L

L


   
      

   
 

 42 sin
2 2

tethers tethers

Contract spoke spoke

tethers

E A d d
M L L

L


   
      

   
 

 
2

44 sin
2

tethers tethers

Extend Contract spoke

tethers

E A d
M M L

L


 
    

 
 

buoyancy buoyancy bM F z  

l ggravity tota gM m z  

 l gtethers buoyancy totaM F m T  , (22) 

where d is the platform diameter and T is the drift of the 

platform. The center of the buoyancy is at z=zb. The CG for 

the system at rest is z=zg. The length of the spokes extending 

beyond the platform is Lspoke. 

 

2

4

l

4
2

g

tethers tethers

spoke

tethersBase

buoyancy b tota g

E A d
L

LM

F z m z T



  
    

   
 

   

 . (23) 

Therefore, the roll and pitch restoring coefficients are [17]: 

 

2

44 55

l

4
2

g

tethers tethers

spoke

tethers

buoyancy b tota g

E A d
C C L

L

F z m z T

 
   

 

  

. (24) 

Although wave forces will not generate significant yaw 
motion of the oater, wind turbine loading can cause yaw mo-
tion. The restoring coefficient for yaw is similar to the surge-
restoring coefficient. Movement of the tether produces hori-
zontal force components, which act along the spokes and 
platform diameter to generate moments that counteract the 
yaw motion. The yaw restoring coefficient and yaw displa-
cements is found using the following equation [17]: 

2

66

2
spoke

tethers

tethers

d
L

C F
L

 
 

 
   (25) 

The diagonal elements of the linear mooring system 
matrix calculated by the analysis and get basing on Equation 
(19, 20, 23, 24). 

mooringC

153200 0 0 0 0 0

0 153200 0 0 0 0

0 0 81654330 0 0 0
 

0 0 0 12000000000 0 0

0 0 0 0 12000000000 0

0 0 0 0 0 49630000



 
 
 
 
 
 
 
 
  

. (26) 

 
The total translated stiffness matrix is the sum of turbine 

stiffness, restoring effects, and mooring properties. 

total turbine restoring mooringC  = C  + C  + C , (27) 

total

7

C

0.015 0 0 0.03 0.02 0

0 0.015 0 0.01 0.03 0.007

0 0 8.421 0.03 0.03 0
 

0 0.808 0 1410 3.22 6.199

0.195 0 0.126 3.66 1413 0.41

0 0 0 0.12 0.11 4.48

10



 
 

 
 
  
 

  
  
 

  



. (28) 

3.5 DAMPING PROPERTIES 

The damping matrix for the platform, which depends on the 
frequency of the incident waves, was calculated internally 
using SeaFEM software at each frequency and was obtained 
from [6]: 

6

0.04 0 0.01 0.25 4 0.08

0 0 0 0.11 0.18 0.05

0.01 0 0 0.04 0.92 0.33

0.27 0.31 0 16.17 50.3 13.88

3.42 0.06 1 23.92 400.1 59.01

0.05 0.02 0.22 11.08 52.6 101.2

10

WTB 

  
 

  
 
    
 

 
  
 

   



. (28) 



COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12D) 289-295 Wang H F, Fan Y H 

294 

 

The damping matrix of the wind turbine depends on 
wind loads, natural damping due to friction of rotor and 
other components, aerodynamic loads, and so on. This is 
calculated by the FAST for the wind load and rated speed. 

4 FEM model 

SeaFem is a new simulation tool to simulate sea keeping 
capabilities of ships and offshore structure, which have been 
developed for more realistic simulations to solve potential 
flow equations in the time domain and to use the FEM on 
unstructured meshes [3]. It has been used for the 
computational analysis of the effect of waves, wind, and 
currents on naval and offshore structures. 

A model for the platform was created in SeaFEM, and 
properties of the turbine based on the matrices discussed in 
the prior sections were used here. 

The depth of the domain was chosen to be 150 m 
according to the guidelines given in the SeaFEM manual. 
The intermediate area with a radius of 50 m represents the 
analysis area where there is no artificial dissipation. The rest 
of the computational domain was used to absorb the 
refracted and radiated waves from the body. A schematic of 
the computation domain is shown in Figure 2. The radius of 

the platform is 9 m. The analysis area has a radius of 50 m 
while the computational domain has in total 300 m. The 
actual depth of the sea is 200 m while in the model a depth 
of 150 m is used. In the analysis, the wave spectrum type is 
white noise, and the wave amplitude is 1 m. The smallest 
wave length and longest wave length are 4 m and 20 m, 
respectively. The number of nodes used in the mesh was 
35,768 with and 205,648 elements. The mesh of the 
computational domain is shown in Figure 3. 

 
FIGURE 2 Computational domain 

 
FIGURE 3 Mesh is show for different part

 
FIGURE 4 TLP model mesh 

5 Results and analysis 

The TLP model was created using GID software (shown in 
Figure 4) and a time domain analysis was carried out using 
the above appropriate matrices. The pitch RAOs were 
extracted from the analysis and compared against the NREL 
data [5] (shown in Figure 5). The results obtained were close 
to one obtained in the NREL results. Regarding the MIT 
results, Matha shows that the RAO in pitch from the FAST 
calculation has increased five times compared to the MIT 
calculation by Tracy, which in reality would mean the 

destruction of the mooring line and the failure of the TLP 
[5]. In our calculation, we also find the same situation as that 
of Matha’s result (green curve in Figure. 5), which means 
the process is correct.  

 
FIGURE 5 Pitch RAOs vs. frequency for compartioni 

Let us check the NREL and SeaFem curve in Figure 5; 
the two plots appear to be in close agreement at the 
resonance frequency and magnitude of the pitch RAO at 
resonance, and the curve trend is same. This resonance 
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frequency and magnitude of RAO can also be obtained by 
linear analysis. As stated earlier in the report, the natural 
frequency of the entire structure can be obtained from the 
equation of motion. 

total

total

C

M
  . (29) 

Therefore, to calculate the natural frequency in pitch, C55 
and M55 components are required which are derived earlier 
in the report. Neglecting the added mass coefficient and 
using these values, the frequency obtained is 1.31 rad/s. The 
resonance frequency obtained by our new method is around 

1.2 rad/s. In Matha report, the result is 1.2 rad/s [5]. The real 
value deviation for our method and equation calculation is 
8%. This narrow discrepancy can be attributed to the 
negligence of the mass term in the computations. 

In this report, we calculate pitch RAOs using the FEM 
method on unstructured mesh (UM-FEM) and compare 
them with other results based on the same situation and 
model. We prove that the process is correct and the value 
deviation is small to satisfy the engineering requirements. 
Based on the UM-FEM method, GID and SeaFem are good 
choices for future calculations and applications for RAOs in 
offshoring wind energy. 
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