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Abstract 

The vector parabolic equation (VPE) method is introduced to calculate bistatic RCS of three-dimensional (3-D) electrically-large 

objects and polarization effects are fully taken into account. According to an approximate form of the vector wave equation and 

divergence-free condition the VPE was derived in this paper. The numerical results conducted on the scattering from perfectly 

conducting cube show the VPE agree with the exact method, and computation time is acceptable compared with the traditional full 
wave method. 
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1 Introduction 

 

The Parabolic Equation (PE) is an approximation of wave 

equation, and it first was introduced by Leontovich and 

Fock [1, 2] in 1940s to treat the problem of diffraction of 

radio waves around the Earth. Recently, it have been 

applied to radar cross section (RCS) calculations [3, 4]. 

The scalar PE method expands the pseudo-differential 

operator of the scalar wave equation, discretizes objects 

with a series of planar element, the solution is marched in 

that direction from one transverse plane to the next, thus 

reducing the full three-dimensional problem to a sequence 

of two-dimensional calculations, which enhance the 

efficiency of computing greatly. We can get RCS at all 

scattering angles by near-field/far-field transformations 

and rotating the paraxial direction. The PE techniques may 

bridging the gaps between rigorous numerical methods [5] 

and asymptotic methods [6]. Using the PE method one can 

avoid both the limits of CPU time and memory by the 

rigorous numerical methods and those of narrow 

applications by the asymptotic methods, especially for 

electrically-large objects scattering problem. 

In order to treat polarization effects fully for 

electromagnetic scattering, the Vector PE is obtained by 

coupling component scalar parabolic equations via 

suitable boundary conditions on scatterers. In this paper 

the vector parabolic equation method was introduced to 

calculate bistatic RCS of 3-D electrically-large objects. 
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2 3-D Parabolic equation 

 

2.1 3-D SCALAR PARABOLIC EQUATION 

 

In this paper, the time dependence of the fields is 

assumed as exp(-jωt). We work in Cartesian coordinates 

(x, y, z) and start with 3-D scalar wave equation 
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2 2 2
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where k is the wave number, and n is refractive index. 

Choosing the positive x-direction as the paraxial 

direction and defining the reduced field u by 

( , , ) exp( ) ( , , )u x y z ikx x y z  . (2) 

The scalar wave equation in terms of u is 

2
2 2 2

2 2

2 2 2
( 1) 0

u u u u
ik k n u

xx y z

   
     

  
 (3) 

and it can be formally factored as 
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in which the pseudo-differential operator Q is given as 
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Equation (4) can be reduced to 
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Equation (6) is the called forward parabolic equation, 

which is most importance in many cases. Using first-

order Taylor expansions of the square root Q : 
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The 3-D scalar Parabolic Equation is given by 
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2.2 3-D VECTOR PARABOLIC EQUATION 

 

Outside the objects the electric and magnetic fields E  and 

H  satisfy the vector wave equation 
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. (10) 

In this paper we solve in terms of electric field E  and 

magnetic field H  that can be obtained from 

0E j H   , if required. We write 

i sE E E  , (11) 

where E , iE and sE  are total, incident and scattered 

fields, respectively. The three fields all satisfy the vector 

wave Equation. The reduced scattered filed u in x-direction 

is 

s jkx su e E . 

As scalar parabolic equation approximation, the vector 

wave equation can be factored three scalar parabolic 

equations for the components (ux
s, uy

s, uz
s) of us: 
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. (12) 

In what follows, we consider perfectly conducting 

objects embedded in a vacuum (n=1), so the tangential 

electric field must be zero on the surface of scattering 

objects. This gives the following system of equation: 
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where P is a point on the surface of scattering objects and 

(nx, ny, nz) is the outer normal to the surface at P. 

In order to obtain a well-determined system we must 

introduce the divergence-free condition of Maxwell’s 

equation because the three equations of in (13) are not 

independent. The divergence-free equation is: 
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. (14) 

Combining the first Equation of (12) and (14), we can 

get the vector parabolic equation as 
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3 Implementation aspects 

 

3.1 FINITE-DIFFERENCE SCHEME 

 

As scalar parabolic equation method [7], the vector 

parabolic equation can be solved using finite-difference 

scheme. To 3-D object scattering problem, we use a 

double-pass method [8], where the field is first propagated 

assuming the object is not present at the next range. For 

this first pass the equations are separable and the scheme 

can be factored into tridiagonal matrices, which can be 

inverted efficiently with Gauss pivot methods. In the 

second pass the field is recalculated taking the object into 

account, using the first pass results as boundary values for 

a small transverse region enclosing the scatterer. A sparse 

matrix formulation implementing the electromagnetic 

boundary conditions is used for this second pass, ensuring 

that polarization effects are fully taken into account pass 

the equations are separable. 

 

3.2 DOMAIN TRUNCATION 

 

For domain truncation in the transverse, we added 

Perfectly Matched Layer (PML) as the truncation 

boundary conditions. We construct 3-D PML by replacing 

coordinate y and z with complex coordinate ŷ  and ẑ  

given by 

 
0

ˆ
y

y y i d     , (16) 

 
0

ˆ
z

z z i d     , (17) 

where 
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 
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a by y y 

 
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
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 (18) 

 

     other

0,

0,

a bz z z 

 

  




. (19) 

Integration domain with PML absorbing boundary 

condition is shown in Figure 1. It is composed by the area 

of [ , ] [ , ]a b a by y z z . 

 
FIGURE 1 Integration domain with PML absorbing boundary condition 
 

3.3 FAR-FIELD FORMULAS 

 

When receiver polarization has to be taken into account, 

the total bistatic RCS is defined as 

2

2

2

( , , )
( , ) lim 4

( , , )

s

t r i

E x y z t
r

E x y z

   



 , (20) 

where cos , sin cos , sin sinx r y r z r       . 

We assume the receiver is polarized along vector t . If 

the incident field is a plane wave of unit amplitude, we can 

get the equation: 

2
2 2

sin ( cos sin )

0,

( , )

cos
( , )

t

s ik y zk
E x y z te dydz  

  





 

 

 



 
 (21) 

in which x0 can usually be chosen as 10λ (λ is the 

wavelength of incident wave). The total RCS is obtained 

by summing x, y, z components of RCS. 

 

4 Numerical results 

 

In this numerical example the incident field is a plane wave 

with its amplitude set to be 1.0, and incident angle is 0°. 

The incident source with its wavelength of 1m (frequency 

0.3 GHz) is vertically polarized and propagating in a 

vacuum (n=1), which illuminated a perfectly conducting 

cube 12λ on each side. We use PML absorbing boundary 

conditions at computation domain. To obtain the bistatic 

RCS (0°-180°), we need six rotated PE runs for VPE. 

Figure 2 and Figure 3 show bistatic RCS of perfect 

conducting cube 12λ on each side for E and H plane 

patterns respectively. The results proved the validity of the 

present method. Using the VPE method, the CPU 

consumed by this example was under 10 min on desktop 

computer, but this case would be quite stressful for 

traditional Method of moments [8]. 

 
FIGURE 2 Bistatic RCS of perfect conducting cube 12λ on each side (E 

plane) 

 
FIGURE 3 Bistatic RCS of perfect conduct cube 12λ on each side (H 

plane) 
 

5 Conclusions 

 

The vector parabolic equation allows accurate treatment of 

polarization effects within the paraxial constrains. The 

combination of VPE formulation with the rotated PE 

methods provides a powerful tool for electromagnetic 

scattering problem. The results of example proved the 

efficiency of the VPE method to calculate Electrically-

large Objects RCS. The work presented here is limited to 

perfectly conducting objects embedded in a homogeneous 

background. 
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