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Abstract 

Particle swarm optimization(PSO) is a very important swarm intelligence algorithm which plays an effective role in searching the 
optimum piont of space systems. The key to search for the optimum piont is the behavior of each particle as well as the entire swarm. 
During their searching, the stability of the particles is the premise to ensure the convergence of the system. Only under the  condition 
that the whole searching process is of stable convergence does pso algorithm effectively find the global optimum. This paper 
analyzes the relationship between PSO parameters from the aspect of stability and achieves the goal of ensuring the stable 
convergence of the algorithm. 
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1 Introduction 

The particle swarm optimization is an intelligence optima-
zation algorithm proposed by Kennedy and Eberhart in 
1995[1,2]. PSO algorithm, inspired by the swarming 
behavior of social groups, simulates the foraging behavior 
of flocks of birds which collaborate to achieve optimal 
state in their search for food. PSO is based on the iteration 
of the swarm, where particles, members of the swarm, 
work in collaboration to search in the space towards the 
optimal point determined by the best particle  with the full 
use of the group intelligence[3,4]. Owning to its character-
ristics of being simple and easy to be implemented, PSO 
has great advantage in many engineering applications and 
can be applied to many problems such as nonlinear conti-
nuous optimization, combinatorial optimization and others. 
It is also widely used in classification recognition, pattern 
recognition, multi-objective optimization, signal proces-
sing, nonlinear control, automation control, detection tech-
nology, artificial intelligence, self-adaptive learning, data 
fusion and other aspects [5-8]. However, the standard PSO 
model shows defects in the fact that the particle swarm is 
prone to local optimum and premature convergence. 

There is much literature on improving the PSO algo-
rithm.In 2000, Eberhart and Shi employed constriction 
factor in the PSO iterative equation to constrain the velo-
city and position of the particles, resulting in the impro-
vement of the PSO performance [9]. In 2001, Shi further 
applied fuzzy self-adaptive regulation w  for the better 
result in the unimodal function [10]. Angeline considered 
the selection operator in his research which transferred 
characteristics of good particles selected in each iteration 
to the next generation, so that the particles maintained a 
good performance [11]. Clerc and Kennedy considered a 
deterministic approximation of the swarm dynamics by 

treating the random coefficients as constants, and studied 
stable and limit cyclic behavior of the dynamics for the 
settings of appropriate values to its parameters [12]. Trelea 
adopted the discrete-time dynamic system theory to study 
the convergence and robustness of standard PSO algo-
rithm, and emphasized the importance of parameter selec-
tion on the convergence of the system [13]. Kong Ying 
adopted a hybrid learning algorithm combining Particle 
Swarm Optimization  with BP. Through the comparison 
between predictive and the experimental data and the scroll 
efficiency experiment, the proposed prediction method is 
validated and can be successfully used to improve Pneu-
matic conversion efficiency[14]. Alfi incorporated an 
adaptive mutation mechanism and a dynamic inertia 
weight into the standard PSO method to enhance global 
search ability and to increase accuracy [15]. Ghosh, S. et 
al. proposed a state-space model of the lbest PSO，and 
concluded that the use of control theory can ensure the 
stability and convergence of the particle dynamics [16]. 

The motion of PSO particles tends to be stable and 
convergent during their searching towards the optimal 
point in wide space. These improvements are directly or 
indirectly related to choosing the parameters of the 
standard PSO algorithm. So the mutual dependence and the 
range of PSO parameters are crucial to the convergence of 
the algorithm and the search for the optimal point. In this 
paper, we focus on the relationship between parameters. 

2 Lyapunov Theorem And Pso Stability 

2.1 LYAPUNOV THEORY 

The equation of state is A 


 ,where is the state vector 
in n-dimensional space, and A is n n  constant coefficient 
and non-singular matrix. The system is at the stable equili-
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brium point, i.e. the convergence point when    becomes 
zero. The necessary and sufficient condition of the asymp-
totic stability in a wide range is that if given a real symmet-
ric positive definite matrix  , there exists a real 
symmetric positive definite matrix G  . If the two matrices 
satisfy the equation ( )TA G GA    , the scalar function 
equals to ( , ) T

t tV t G    .The scalar function ( , )V t  is 
a Lyapunov function, where t  is iterative time step, descri-
bing the change of the system, and A  is the coefficient 
matrix of the internal parameters of the system, which 
shows the relationship between the state variables of the 
space and the variation of the state variables in their move-
ment in the space, and is influenced by the system model 
and mechanism, the spatial structure of the model, and etc. 

Using the scalar function ( ) TV G   , where: T is 

the transpose of  . If ( ) 0V   , then G  is positive defi-

nite. Suppose that   is positive definite, and satisfies the 

following relationship: 

( )

( ) 0

T
T T T T

T T T

V G G A G GA

A G GA

        

   

  

   

     

, (1) 

( )TA G GA     (2) 

The system tends to be asymptotically stable. The way 
to decide whether   is a positive-definite matrix or not 
can accord to Sylvester criteria, which defines the neces-
sary and sufficient condition of a positive-definite matrix is 
that its each leading principal minor is positive. 

2.2 CONVERGENCE AND STABILITY ANALYSIS 

The problem of convergence can be transformed into that 

of stability. In other words, the stability theory can be used 

to ensure the convergence of the system. Under the 

condition that 


n ， 


 *

, and C

,we have the equation: *lim 0n
n



 


   .Then   order 

of  n is converged at 
* . 

Where:  n is a random variable domain; * is a 

target value;  represents a transformation; C  is a cons-

tant domain.  

The relationship of any optimization can be defined by:

( ) ( *)f f  , nR  .  

If in continuous systems, ( *)
( *) 0

f

t





  


 and in 

discrete systems, ( *) ( *) 0f     . Then
* here is the 

stable point of the system. Using an arbitrarily small real 

number   which satisfies Rn  , 0  , and 

,( )D

k t   . Where; ,

D

k t  is an acceptable expected value 

achieved through t times of iteration by k in dimension D. 

In the entire search domain, if the value range of   is

 , na b R    (A, B refers to the boundary of the 

particular domain), and if there exist ,
t
liminf ( ) 0k t


   

and ,sup ( )k t
t

l im  


  , the convergence can be rea-

ched at ,

D

k t  of  D-dimensional space state. 

The stability is the precondition of convergence. We 
discover because Lyapunov function can guarantee the 
convergence of state parameters during their movement in 
the space, the PSO algorithm applies the state space. In 
given search domain, Lyapunov function is used to 
constrain the motion of each particle of the swarm, which 
can ensure the PSO algorithm tends to be stable and 
converged, and finally achieve the convergence in the 
global search. 

3 The relationship between pso parameters 

3.1 THE DESCRIPTION OF STANDARD PSO 

PSO algorithm is a very effective swarm intelligence algo-
rithm. The particles gradually accumulate at the global 
optimum during their search in a given space, continuously 
adjusting their position and speed, and taking into account 
the change of the best position in the possible search 
domain. Their motion is gradually converged and stable, 
which may well be analyzed by using Lyapunov theory.  
Based on the analysis of the convergence above, we ana-
lyze the convergence of the standard PSO algorithm, and 
further propose the guideline on parameter selection.  

The standard PSO[1]  is defined by the following (3) 
and (4): 

i 1 1 ,

2 2 ,

( 1) ( ) ( ( ))

( ( ))

i Pbest t i

gbest t i

t t c r P t

c r G t

   



    

 
, (3)  

( 1) ( ) ( 1)i i it t t      . (4)  

For the standard PSO algorithm, every particle, when 
searching in the space, adjusts its optimal position by pbestP  
and gbestG , and strengthens the communication and inter-
action with other particles by gbestG , and as a result, all 
particles can approach the global optimum more quickly.  
So that pbestP , gbestG  can ensure particles are interrelated, 
and at the same time independent on each dimension of the 
space.  

In order to accurately characterize the search of the 
particle swarm on D-dimensional space, and maintain the 
generality of our analysis, we deal with the analysis of 
convergence and stability in a one-dimensional space. 
Analyzing the behaviour of a particle in one-dimensional 
space, we can indirectly analyze the trends of the swarm in 
the space search. According to the analysis of the literature, 
the iterative method is adopted in the implementation of 
the PSO algorithm. So long as the particles remain 
relatively stable in each iteration, the state in each 
dimension is mutually stable in D-dimensional space. 

3.2 DETERMINING PSO PARAMETERS  
ON THE BASIS OF LYAPUNOV 

Derivation of the basic formula of the PSO algorithm: 

i ( 1) ( ) ( ( ))it t t     
  

      , (5)  
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( 1) ( ) ( 1)ii it t t  
  

    , (6) 

where: 
1 2      and 

1 1 1r c   , 
2 2 2r c      

Suppose: 

1 2( )pbest gbestP G 




  
 . (7)  

According to the recurrence relation: 

i ( 2) ( 1) ( ( 1))it t t     
  

        . (8)  

According to the equation of the state of discrete 
systems, we choose the state variables ( )t  to satisfy the 
following relationship:  

1 1

2 2

( 1) 0 1 ( )
( 1)

( 1) 1 ( )

A ( )

t t
t

t t

t

 

   

    
        

       

 

. (9) 

Because of their programming needs, the researchers 
usually discredited the continuous systems and conduct 
recursive analysis. For a system object, the motion of the 
particles is within the scope of linear space. In other words, 
there should not be any changes to their own characteris-
tics. The motion of the particles is continuous. 
In accordance with Lyapunov Function[18,19] ,let 

11 12

21 22

g g
G

g g

 
  
 

 Especially, 
1

I
2

   . I is the identity 

matrix. 
In light of the definition of the Lyapunov Function, the 

following are required to guarantee the stability of the 
particles in the wide range of n-dimensional space.  

If 
11 0g   and 

11 22 12 21 0g g g g    , then there can be 
deduced the constraint condition 1 0    , i.e. 

1   , which can ensure the stability of the particle 
swarm in space search, its good convergence and tendency 
to a stable point. 

In addition, based on the limit superior of the 
parameters derived in Frans Van den Bergh’s doctoral 
thesis (Van den Bergh Frans,2001)[20]:  

criteria 1 2sup 0.5 1 , (0, ]c c         . (10)  

It can be deduced that there exists sup( ) 2 ( 1)    , 
so   has a closed range of values, i.e. ( 1,2 2)      . 





1

1 2 4

-1

0




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0

       

FIGURE 1 The relationship between   and   in  

Frans Van den Bergh’ dissertation. 
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FIGURE 2The relationship between   and    

based on Lyapunov theory. 

Figure 1 depicts the relationship between   and   set 
forth in the dissertation. In the black area, the particles are 
less likely to converge, and algorithm as a whole is not 
easy to find the optimal solution. The red region in Figure 
2 shows the following relationship derived in this paper: 

1 2 ( 1)       , (11)  

where: 0 1   and 0 4  . The relationship expres-
sed in the red region improves the computing of the algo-
rithm to a certain extent, and can ensure that the particles 
achieve stable convergence in space search. 

When parameters vary within the range of Eq. (11), the 
flight speed and positions of the particles change in each 
iteration. This improvement helps the algorithm to over-
come the defect of local optimum; for the system as a 
whole, it not only takes into account the randomness of the 
PSO algorithm, but also guarantees the stability of the par-
ticles during their motion in the space,and further ensures 
the convergence of the algorithm. 

4 The improvement of the pso algorithm and 
simulation 

4.1 THE CONSTRAINT PSO ALGORITHM 

Based on the analysis above, the improvement of the 
standard PSO algorithm is on the constraint of parameters 
(referred to as the constraint PSO algorithm ),which is 
presented here. 

Constraint PSO Algorithm 
     Begin initializes PSO  
      Sub_fun (  ) 
             {   Set     ,

1c ,
2c  

Random
1r ,

2r  
                            Calculate ,  Eq. (7) 
                  If     (   Satisfy   ( 1,2 2)      ) 
                             Updata   Eq.(5)(6)                  } 
     While (not satisfy termination conditions) 
             {   Calculate each particle’s fitness 
                  Calculate  gbestG  
                  Call Sub fun (  )                                 } 
       Output fitness ( gbest ) 

4.2 FUNCTION TEST AND ANALYSIS 

Rastrigrin function, having approximately 10n  local mini-
mum. Because it is a typical non-linear multi-modal func-
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tion, and its peaks are variable, going ups and downs, it is 
not easy to find the global optimum. 

The description of the function:   

2

1

( ) [ 10 cos(2 ) 10]
n

i i i

i

f x x x


       

5.12 5.12ix    

its global minimum： min ( ) 0f x   

 

FIGURE 3 The space effect of the Rastrigrin function. 

 

FIGURE 4 The change of the log value of the absolute positions of the 

particles in the iteration of standard PSO and constraint PSO 

 

FIGURE 5 The degree of convergence of the standard PSO particles. 

 

FIGURE 6 The degree of convergence of the constraint PSO particles. 

In Figure 3 shows the multimodal Rastrigrin function, 

compared with the unimodal function, is more likely to 

cause PSO to fall into local optima in the search for glo-

bal optimum because there are more peaks in the search 

domain Figure 4, as the change of the log value of the 

absolute positions of the particles in the iteration of stan-

dard PSO and Constraint PSO, illustrates the constraint 
PSO is better converged in multimodal and complex case. 

In Figure 6, the particles of the constraint PSO are better 

converged in iteration, while in Figure 5, many particles 

scatter away from the centre. Through a comparative ana-

lysis of Figure 5 and Figure 6, the PSO algorithm based 

on Lyapunov function enables the particles to effectively 

gather at the convergence point and have better conver-

gence.  

5 Conclusion 

Analyzing the behaviour of PSO particles, we discover that 
there exists strong binding and coupling between the para-
meters of the standard PSO model, and the different range 
of parameters keeps the system in different state. There-
fore, parameter selection is essential for the stable conver-
gence of the system and is able to directly affect the con-
vergence and performance of the PSO algorithm. In this 
paper, we transform the standard PSO model into the iter-
ative model, describe the motion of the particles with the 
equation of state, determine the relationship between PSO 
parameters, and finally test the standard PSO and Cons-
traint PSO with the use of Rastrigrin functions. From the 
test results, the Constraint PSO is proved to effectively 
improve the convergence of the system by restricting the 
parameters, whose effect is clearly shown in the simulation 
graphics. Therefore, the Constraint PSO is an improvement 
with good performance in guaranteeing the convergence. 
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