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Abstract 

Based on the above-mentioned studies, this article put the modified Fuzzy Clustering method into the particle swarm optimization, 

which solved the curse of dimensionality existing in the conventional algorithms. The large-scale parameter optimization method 

applied the modified Fuzzy C-Means method to clustering the large-scale dimension under the coevolution frame and achieved the 

valid dimension grouping. Later on, the dynamic neighbourhood topology multi-species particle algorithms divided the whole species 

into packets and constructed the subspecies sharing neighbourhood information, which improve the searching efficiency. The bring-in 

trust region could have the self-adapt adjustment for the particle optimization range, accelerate the optimizing speed, and decrease the 

iterations in the dead space. We use 20 standard large-scale testing functions for simulation. Compared with the top-ranked tournament 

algorithm, the mentioned algorithm achieved a better optimizing result in most functions, which surely laded the foundation of the 
large-scale neural network parameter optimization and the application in the control system. 
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1 Introduction 

 

Particle Swarm Optimization doesn’t rely on the specific 

objective function form and avoided the counting process 

of the Jacobi matrix and Hessian matrix in the classical 

mathematics methods. But its search capability would 

heavily decline facing the large-scale problem. The 

phenomenon was not only caused by the existence of the 

locally optimal solution, but also by the possible 

degradation of the particle’s speed, which lead to the 

search in a continuous subspace of the whole searching 

hyperplane. Besides, there are many complicated high-

dimensional optimization problems in the actual industrial 

production process. Therefore, it’s highly necessary to find 

out a fast and efficient algorithm to solve the large-scale 

optimization problem. This article put forward the 

Dynamic Neighborhood Particle Swarm Optimization 

Algorithm with the Fuzzy Clustering, and mainly 

improved the three things as follows: 

Adjust searching space in the self-adapt way and 

accelerate the optimization process. When the next 

iterative point could fully decrease the objective function, 

the trust region (Independent variable search space) would 

diminish and the particle could rapidly find out the optimal 

point, without wasting more iteration in the dead space. 

The most important problem in the coevolution is the 

packets. How many dimensions should be there in one 

packet? And which dimensions should appear in the same 

packet? Hence, using the improved Fuzzy C-Means 

algorithm suggested in this article to analyse the 
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relationship between variables and divide the similar 

variables into one packet for optimizing. 

Adopting the Dynamic Neighbourhood Particle Swarm 

Optimization Algorithm, this article introduced an 

optimize method in packets. The self-Adapting topological 

structure could learn the neighborhood position and self-

organize and construct the subpopulation to share the 

information, which improve the continuous space search 

ability 

 

2 The particle large-scale parameters optimization 

method based on the Fuzzy C-Means Clustering 

 

2.1 FCM CLUSTERING ALGORITHM 

 

Traditional clustering algorithms assign each object to one 

and only one cluster in accordance with strict standards. 

The clusters have distinct boundaries. Objects in a cluster 

are very dissimilar from objects in the other clusters. This 

is called hard clustering. Traditional clustering algorithms 

are all based on “hard partition” [1]. However, things in 

the objective world are closely connected to each other; 

nothing can exist in total isolation. In other words, there is 

not a thing that belongs to one and only one class; objects 

cannot be divided into classes that share no similarities. 

People have a better understanding of the world as it 

develops. But traditional hard clustering methods fail to 

solve practical problems well. “Soft partition”, a more 

realistic clustering method, was thus created in contrast to 

“hard partition”. 
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Fuzzy C-Means Clustering Algorithm (FCM clustering 

algorithm) is a fuzzy clustering algorithm based on 

objective functions, which is different from traditional 

clustering algorithms. FCM clustering algorithm, in 

essence, is rooted in Hard-means Algorithm (HCM) [2]. 

 

2.2 SOLVING PROCESS OF FCM CLUSTERING 

ALGORITHM 

 

Based on the principle of least squares, FCM clustering 

algorithm aims to minimize its objective function J(μ, A) 

and realize convergence of the iteration process. The 

objective function J(μ, A) of FCM is defined as:  
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where ( 1,2,..., )iA i c  is the cluster centre and m (m>1) is 

the fuzziness index. Below are the value formulas of μ and 

A during convergence of the iteration process: 
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Suppose the sample space 
1 2( , ,..., )mX x x x  and c 

denotes all positive integers greater than 1. A fuzzy matrix 

( )ij   is used to divide Z into c classes. ij  means the 

ith sample point belongs to the j-th membership. 

Obviously, ij  meets the following conditions: 
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The iteration process of FCM clustering algorithm is as 

follows [3, 4]:  

Step 1: Start with a random initialization of 
(0) ; 

initialize 
(0)A  and calculate 

(0) ; make the number of 

iterations k=1; select the number of cluster centres c and 

the fuzziness index m; 

Step 2: Calculate the cluster centre, assign a value to 
( )kA , and calculate 

(0)  according to Expression (2); 

Step 3: Recount the membership, assign a value to 
( )k , and calculate 

( )kA  according to Expression (3); 

Step 4: If 1max | |k k

ij ij     and the algorithm 

convergence is achieved, stop the iteration process; 

otherwise, make k=k+1 and return to Step 2; ε is a given 

threshold value. 

 

2.3 PARAMETER SETTING OF FCM CLUSTERING 

ALGORITHM 

 

The fuzzy weighting exponent m is a parameter introduced 

by Bezdek in order to popularize the criterion functions in 

fuzzy clustering. m must lie between 0<m<∞. When m 

approaches to 1, FCM clustering algorithm will lose its 

fuzziness; when m approaches to +∞, FCM clustering 

algorithm will lose the meaning of clustering. We usually 

assign 2 to m. 

 

2.4 ADVANTAGES AND DISADVANTAGES OF 

FCM CLUSTERING ALGORITHM 

 

FCM clustering algorithm is featured by simple design, 

fast convergence, wide application areas, easy 

implementation, and strong local search ability. The 

algorithm is rooted in traditional C-means clustering 

algorithms and in essence, it is a type of local search 

algorithm. So, it inevitably has the disadvantages of C-

means clustering algorithm. If the initial cluster centre is 

next to a local optimum, the algorithm will converge to a 

local minimum. It is sensitive to the initial value and noisy 

data. For different initial values, the clustering results are 

dissimilar. As a result, the objective function may easily 

falls into local optima. Worse still, it may lead to a 

degenerate solution or no solutions at all [5]. 

 

3 PSO algorithms 

 

3.1 DESCRIPTION OF PSO 

 

Suppose the speed of a basic particle is v and its position 

is x. The iterative formula of the basic PSO algorithm is 

described as: 

1 1 1 2 2( ) ( )t t t tv v c r pbest x c r gbest x      , (5) 

1 1t t tx x v   . (6) 

Equations (5) and (6) are respectively the iterative 

formulas of the speed and position. c1 and c2 are learning 

factors; r1 and r2∈U(0,1); pbest and gbest stand for the 

position of the optimal solution of the individual and the 

entire group, separately. The value of speed v is: 
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where vmax is the value range of speed v. The iterative 

formula of speed v in Expression (6) is divided into three 

parts: vt, c1r1 (pbest-xt), and c2r2 (gbest-xt). The first part 

stands for the speed of the particle; the second part 

represents its cognition level, meaning the particle should 

be considered based on its own conditions; the third part is 

the social part of the particle in group learning, which 

means that learning is conducted through information 

exchange with the “society”. The particle updates itself 

through its current state (first part), self-learning (second 

part), and the social information (third part). If the third 

part is not available, the particle will lack information 

exchange, and the probability of obtaining the optimal 

solution is thereby reduced. The behaviour of working 

behind closed doors and learning blindly will lead to a lack 

of exchanges and has a negative influence on the final 

results. If the second part is not available, the particle will 

easily fall into local optima, though there are enough 

exchanges and extended searching space. Hence, PSO is 

an intelligent model composed of both “cognitive part” 

and “social part” [6, 7]. 

However, the basic PSO algorithm ignores the first part 

– the effect of the particle speed on algorithm 

convergence. To solve the problem, Y. Shi and R. C. 

Eberhart improved the basic PSO algorithm in 1998 by 

adding an inertia weight factor into the iterative equation 

of the speed. The improved equation is: 

   1 1 1 2 2t t t tv wv c r pbest x c r gbest x      , (8) 

where w is the inertia weight factor and the rest parameters 

are the same as before. At present, the standard PSO 

algorithm is the amended algorithm with an inertia weight 

factor [8]. 

 

3.2 ITERATIVE STEPS OF STANDARD PSO 

 

Step 1: Initialize m particles, including their initial speed 

and positions; initialize all relevant parameters; 

Step 2: Suppose the present position of the particle is the 

best position pbest; select the global best position gbest 

according to the best position of all particles; 

Step 3: Each particle updates its speed in line with 

Expression (8), keeps the speed within vmax based on 

Expression (7), and updates its position according to 

Expression (6); 

Step 4: If the current position after the update is better than 

the previous best position of the particle, update pbest and 

replace the previous best position with the current position; 

Step 5: Update the global best position gbest according to 

the best position of all particles; 

Step 6: If it meets the requirements for termination, stop 

the iteration process; otherwise, return to Step 3. 

4 SP-FCM algorithm design 

 

4.1 BASIC IDEAS OF THE ALGORITHM 

 

Rooted in HCM, FCM clustering algorithm inherits both 

its advantages and disadvantages. In nature, it is also a type 

of local search algorithm. Below are the disadvantages [9]: 

1) Very sensitive to the initial values and noisy data; 

easy to fall into local optima; 

2) The rate of convergence will be greatly reduced if 

the initial cluster centre is far away from the optimal point; 

3) The algorithm will converge to a local optimum if 

the initial cluster centre is next to the local optimum. 

To solve the above disadvantages, the thesis uses PSO, 

SFLA, and other intelligent optimization algorithms to 

find the optimal initial cluster centre and thus prevent FCM 

from being sensitive to initial values or falling into local 

optima. The specific theoretical basis is as follows [10]: 

1) PSO has strong global search ability, fast rate of 

convergence, few parameters, and other advantages. PSO 

makes it easier to rapidly lock the range of solutions of the 

optimal initial cluster but also easier to fall into the local 

optimum; 

2) SFLA has the advantages such as strong global 

optimization ability, strong ability to jump out of local 

optima, and ability to enhance the search ability of the 

optimal initial cluster centre. But it has poor local search 

ability and slow rate of convergence. 

Therefore, the thesis puts forward a new SP-FCM 

algorithm on the basis of current literature. Experiments 

show the algorithm can effectively increase the searching 

ability and clustering results of fuzzy clustering 

algorithms. It combines SFLA and PSO by setting a 

searching granularity coefficient. Thus, it can find the 

optimal initial cluster centre and avoid the disadvantages 

of FCM by dint of the advantages of the two. After that, it 

adopts the basic FCM algorithm [11]. 

 

4.2 IMPROVED BASIC ALGORITHMIC PROCESS 

 

The algorithmic process contains four modules: Init 

Module, SP Module, FCM Module, and Output Module. 

The specific functions of each module are as follows. 

 

4.2.1 Init Module 

 

The function of this module is to initialize Q cluster 

centres. Make the cluster sample set

1 2( , ,..., ,..., )t i nX x x x x , where xi is the d-dimensional 

vector. Make an individual represent the set of cluster 

centres, namely, 1 2( , ,..., ,..., )t i cC c c c c ; ci is the d-

dimensional code of the ith cluster centre. Real-number 

encoding is applied to each d-dimensional cluster centre. 

Count the fuzzy matrix and the fitness value. Arrange the 

Q cluster centres in descending order of their fitness 

values. The fitness function of individual ci is defined as: 
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( , ) 1
if x

J A



. (9) 

 

4.2.2 SP Module 

 

This module is aimed at finding the optimal cluster centre 

according to the fitness value. Combine PSO and SFLA 

through a searching granularity coefficient. Integrate PSO 

into SFLA and update the operators of SFLA. The basic 

procedure of the module is shown in Figure 1. 

 
FIGURE 1 Flow Chart of SP Module 

The algorithm needs to fully make use of the strong 

search ability of PSO in the earlier stage so as to narrow 

down the search range and accelerate convergence. During 

late stages of the iteration, it is necessary to make full use 

of the ability of SFLA to jump out of local optima so as to 

expand the search range and avoid falling into local 

optima. PSO and SFLA have their own advantages and 

disadvantages [12]. To put it simply, the combination of 

the two does not only inherits their advantages but also 

their disadvantages. The update strategy of PSO is used in 

each subgroup during the search. Meanwhile, mixed 

update operation is applied to each subgroup, which 

reduces the rate of algorithm convergence as well as the 

local search ability of PSO. Thus, the thesis proposes a 

searching granularity coefficient for the search based on 

the advantages of the two. So, the algorithm can make full 

use of the advantage of PSO in realizing rapid optimization 

in the earlier stage so as to find the basic range of the 

optimal solution rapidly; after that, it greatly increases the 

ability of SFLA to jump out of local optima and thus 

avoids falling to a local optimum. The searching 

granularity coefficient is defined as: 

n
Iter

Granularity
runIter 

 
  

 
, (10) 

where ε is the initial searching granularity; η is the global 

searching granularity; Granularity represents the 

searching granularity coefficient; Iter is the group’s 

maximum number of iteration; runIter is the group’s 

current number of iteration. We can control the 

requirements for searching precision by initializing initial 

searching granularity ε and global searching granularity η. 

Prior knowledge is required for each data set. Following a 

linear decrease, we assign the values of 0.9 to 0.1 to inertia 

weight factor w. The definition is as follows: 

max min

max

( )
run

runMax

 
 


  , (11) 

where 
max , 

min , run, and runMax denote the maximum 

inertia weight coefficient, the minimum inertia weight 

coefficient, the current number of iterations, and the 

maximum number of iterations, respectively. 

 

4.2.3 Fcm module and output module 

 

The function of Fcm Module is to update the fuzzy matrix 

through FCM algorithm after obtaining the optimal cluster 

centre c. Output Module outputs the clustering results 

based on the fuzzy matrix [13]. 

 

4.3 ALGORITHM DESCRIPTION 

 

Step 1: Initialize Q cluster centres; runIter is the counter 

of the group’s number of iterations and runsubIter is the 

counter of the subgroup’s number of iterations; initialize 

all relevant parameters; 

Step 2: Count the fuzzy matrix of each individual with 

Equation (2) and count the fitness value f(xj) with Equation 

(9); 

Step 3: Arrange the cluster centres in descending order of 

the fitness values and assign each individual in Q cluster 

centres to subgroup q by the allocation strategy of SFLA. 

Calculate the current optimal solution Xbest and the current 

worst solution Xworst of each subgroup as well as the 

group’s optimal solution in line with the fitness value 

Xgbest; 

Step 4: Use Equations (8) and (6) to update Vj and Xj; 

Step 5: If runsubIter<Granularity, return to Step 4; 

otherwise, go to Step 6; 

Step 6: Update the current worst solution Xworst; if 

successful, switch to Step 8; if not, switch to Step 7; 

Step 7: Update the current worst solution Xworst; 

Step 8: Update the fitness value f(xj); if runIter<Iter, return 

to Step 3; otherwise, go to Step 9; 

Step 9: Find the optimal fitness value Xgbest, which 

represents the fuzzy matrix set of the optimal cluster 

centres.  
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4.4 SELF-ADAPT ADJUSTMENT FOR SEARCHING 

SPACE BASED ON TRUST REGION 

 

The trust region method is another important way to solve 

the non-restriction optimization, different with the linear 

searching. The most obvious advantage is the global 

convergence. 

The trust region thought is define the model function 

max  km x  in the first on every iteration point kx , and 

desire it could well approximate the object function f in the 
kx ’s suitable neighbourhood. The neighbourhood is called 

Trust Region, TR, which defined as: 

 n k

k k
k

S x x x     , (12) 

where 
k

  is the trust region radius,  is a norm rely on 

the iteration. Based on this trust region, seek for the 

optimal trail step k
s  for  

k
m x

,
 which satisfies k k

x s  

and make  
k

m  decrease and 
k

k
s   . If k kx s  make 

f decline enough, it will be accepted as the next iteration 

point which increases 
k , or keeps 

k  unchanged; 

otherwise, make 1kx   as kx , decrease 
k  and shrink the 

trust region to a better similarity for the model function and 

object function on the new trust region. Part 1 algorithm 

flow is: 

Step 1: Set the initial point 1 n
x  , trust region radius 

1
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1 2 1
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k
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4.5 THE DYNAMIC NEIGHBORHOOD MULTI-

SPECIES PARTICLE SWARM PARAMETERS 

OPTIMIZATION 

 

Bring in the dynamic neighbourhood strategy into the 

particle swarm algorithms and divide the total swarm into 

several sub-species with self-adaptation, increase the 

information share between particles in the neighbourhood 

topology. First, we define the neighbourhood space 

distance 
1

R  as follows: 

         1
max , min ,

bestjd id bestjd id
R p k x k p k x k  , (13) 

 
bestjd

p k  is the d-th dimension of the j-th particle’s best 

solution in the neighbourhood, idx  is the d-th dimension’s 

position of the i-th particle. The Equation (13) could be 

divided into 3 situations:  

Situation 1: If  min
i bestj

x p , that is the particle 

position is less than the neighbourhood particle historical 

optimal value, shown as Figure 2a. There into the circle 

mark is the current particle position, the pentagon is the 

swarm optimize position in the neighbourhood. The 

rhombus is the distance from unit historical optimal value 

P
besti

 to every optimal value in each neighbourhood, then 

 1
max( max p)

s bestji iR L L x   ; 

Situation 2: If  x min p
i bestj
  and  x max p

i bestj
 , that 

is the particle is among all the optimal value, shown as the 

Figure 2b, then    
1 1

max p min p
s bestj besti

R L L    ; 

Situation 3: If the particle position is in the right of 

every optimal value, shown as the Figure 2c, then 

   1 1
max min p

i i bestj
R L L x    , thus we can conclude 

Equation (13). 

 
a) first situation 

 
b) second situation 

 
c) third situation 

FIGURE 2 Diversity analysis diagram 

Define the diversity of the potential searching space of 

the global particle swarm algorithms, the j-th 

neighbourhood, as:  

1

1

1 s

j

i

diversity R
SL 

  , (14) 

where S stands for the particle number in the 

neighbourhood, L stands for the linking length. There are 

three neighbourhood creation methods. 
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In the first method, the nearest neighbourhood in the 

searching space  iN k  is: 

      ,i i j iN k j j i x k x k     . (15) 

Make a judgment rely on the distance between different 

particle space positions  
i

kx . When it’s less than the 

threshold value 
i

 , then create the topological relation 

between the two neighbourhoods; 

The second method is nearest neighbourhood of the 

adaptive value function space: 

        , x xi i j iN k j j i f k f k     . (16) 

Make the judgment rely on the adaptive function 

distance and divide the particles with different degree of 

evolution into different neighbourhood; 

The third method is random neighbourhood topology: 

   ,i ijN k j j i     . (17) 

The global Particle Swarm Optimization with Dynamic 

Neighbourhood Topology, PSO-DNT, could be achieved 

with follow steps, shown as Figure 3. 

 

 
FIGURE 3 Dynamic neighbourhood topology schematic diagram 

First divide the overall particle swarm into C sub-

species with LA-FCM algorithms, as Step 1. It’s noticed 

that the fussy clustering is aimed at particles, while Part 2 

is aimed at all dimensions. The process objects are 

different. Then create circle topology structure and inner 

random topology structure in step 2 and step 3 to guarantee 

the complete validity of the neighbourhood optimization 

information. Third, have the regular algorithms 

optimization, when the particle searching space decrease 

gradually, that is 
mindiversity d , create the external 

random topology structure between species to ensure the 

information sharing.  

Thus, the speed evolution formula based on the 

neighbourhood topology is: 

       

     

1

2

1

,

id id id id id

id gd id

v k wv c rand p k x k

c rand l k x k

      

  

 (18)
 

where ( )gdl k  is the current position of the optimal particle 

in the neighbourhood. The method mainly modified the 

third part of the evolution formula. It abandons learning 

the swarm optimal value of the total algorithms and pays 

more attention to the mutual learning between 

neighbourhood particles. 

 

5 The simulation analysis of large-scale parameter 

optimization 

 

We selected 20 standard functions for testing. The large-

scale optimization functions are two types: separable 

functions and inseparable function. When 

 
 

    
1

1

1
,...,

1

arg min ,...,

arg min ,... ,...,arg min ...,

n

n

n
x x

n
x x

f x x

f x f x



.

 (19) 

Every independent variable 
1,..., nx x  is independent 

with each other, then its separable function and easily 

solved. When there are m variables to the most are 

dependent, its call m-inseparable function. When every 

random two variables are dependent with each other, it is 

called inseparable function. 

The 20 standard functions are divided four class: 

1 separable functions. 

2 partially inseparable function, in which there are 

fewer parts are relevant. 

3 partially inseparable function, in which there are 

large parts are relevant. 

4 completely inseparable function. 

All the experiments repeat for 20 times. The testing 

initial conditions: Testing Dimensions=1000, Cluster 

Number=10, Iteration Times=3000000, Sub-species 

Iteration Times=2000, Particle Dimensions=100, 

Acceleration Coefficient
1 21.49, 1.49c c  , Inertia 

Weight 0.8  . The convergence curve of mentioned SP-

FCM is shown in Figure 4. 

According to the Figure 4, the mentioned SP-FCM 

algorithms achieved better results. It is also much closed 

to the best result with stronger stability. In a word, the 

mentioned SP-FCM algorithm gets the most optimal value 

of the 20 testing functions and has a better optimization 

result. 
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FIGURE 4 Convergence curves of the proposed SP-FCM algorithm 

6 Conclusions 

 

In actual industrial process, the control system is much 

more complicated, the parameters to optimize is more and 

more, in which case the normal optimization often lose the 

validity. This article came up with the particle swarm 

large-scale parameters optimization based on the Fussy C-

Means Clustering to solve the curse of dimensions. But the 

Fuzzy C-Means clustering algorithm still has the 

sensitivity to the initial points. In this case, this article 

firstly put forward the Fussy C-Means two-phase 

clustering algorithms based on linear distribution to get 

better initial points by means of linear distribution strategy, 

and then substituted them into the global circulation. It has 

discovered that the mentioned algorithm had a better 

clustering result by simulation analysis. And then, this 

article puts forward a new SP-FCM algorithm on the basis 

of current literature.  

Experiments show the algorithm can effectively 

increase the searching ability and clustering results of 

fuzzy clustering algorithms. It combines SFLA and PSO 

by setting a searching granularity coefficient. Thus, it can 

find the optimal initial cluster centre and avoid the 

disadvantages of FCM by dint of the advantages of the two. 

After that, it adopts the basic FCM algorithm, and it 

achieved the data property weight and initial cluster centre 

to guide the overall cluster progress, which efficiently 

improve the calculate speed and cluster precision. 
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