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Abstract 

In this paper, the mathematic models used to describe memristors are summarized, including the cubic nonlinear model, passive and active 
monotonic increasing piecewise linear models, parabolic curve model and memristive system model of memristor. To further understand 
these models’ characteristics, the definitions on memristor, HP memristor and each mathematic model are introduced first, based on that 
the basic characters, power characters and circuit characters are studied in detail. And as we known, the LDR (Light Dependent Resistor) 
memristor which is a novel analogue model of the memristor proposed in 2012 can be used as a two port device like a resistor, it is good 
in using for future research into memristor applications. So here, by studying the mathematic models of memristor, one of the most suitable 
mathematic models for the LDR memristor is decided. 

Keywords: LDR memristor, mathematic model, memristor. 

 

1 Introduction 
 
As the fourth circuit element in the electrical circuit theory, 
memristor was first proposed by Leon O. Chua in 1971 [1], 
and manufactured in 2008 by a group of scientists from 
Hewlett-Packard Labs (HP) [2]. Obviously, the solid state 
implementation of the memristor have inspired appreciable 
interest in developing applications[3-9], but to date, mem-
ristors are not yet available commercially in any format and 
the HP memristor is not expected to be available in a product 
in the following recent years. Therefore, research on mathe-
matic models of memristor, especially on HP memristor is 
meaningful, also design and construction of a functional 
analogue memristor model is essential to further experimen-
tal research on memristor applications.  

From 1971 to today, a punch of researchers have started 
to focus on this field, and distinct progress was made too 
[10-13]. More than 5 kinds of memristor mathematic model 
have been widely used to describe the memristor, and each 
of them has distinguished backgrounds 

These years, great achievements have been made in ana-
logue memristor’s building too [14-16]. In [17], a novel 
memristor analog model using LDR have been shown, 
which can be used as a two terminal device in both simu-
lation and experiment as a memristor. It has a wide opera-
tion frequency, which can be extended into a higher frequen-
cy range by changing components in the integrator sub-cir-
cuit, besides that a most important thing is this analogue mo-
del can be working as a two port element like resistor, induc-
tor and capacitor we are familiar with and its i-v properties 
are similar to the HP memristor. 

In this paper, the author will summarize these existing 
models and try to find the most suitable one for the LDR 
memristor, which is proposed in [17]. This paper is organi-
zed as follows: Firstly, the memristor’s defination is intro-
duced. Secondly, the HP memristor model is shown. Thirdly, 
each existing mathematic model for memristor is studied. 
Finally, a short instruction of the LDR memristor is given, 
and the suitable model for it is chosen.  

                                                           
* Corresponding author e-mail: youyuan-0213@163.com 

2 Definition of memristor proposed by Chua 
 
The relationships between the well-known basic circuit ele-
ments and their corresponding fundamental electrical quan-
tities are shown in Figure 1, from which Chua first found a 
circuit element was missing to directly describe the relation-
ship between φ and q. This is how this two terminal circuit 
element named memristor is proposed in 1971 [1]. Figure 2 
shows the sign of memristor and its φ-q relation. 

Memristor is characterized by f(φ,q)=0. Its charge-
controlled and flux-controlled mode can be given by Eq.(1) 
and Eq. (2): 

( ) ( ( )) ( )v t M q t i t
, ( ) ( ) /M q d q dq , (1) 
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where v(t) is the voltage drop across the memristor, i(t) is 
the current flow through the memristor, and M(q) is the 
memristance, W(φ) is memductance. 

 
FIGURE 1 Reason for the proposal of memristor 
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FIGURE 2. Sign of memristor and its φ- q relation 
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3 HP memristor 
 
HP memristor indeed belongs to the category of charge-
controlled memristor as shown in Figure 3. A partially doped 
titanium dioxide thin film with platinum electrodes make the 
memristance value of this nano-sized solid-state memristor 
influenced by the inner particle’s moving process, and by 
simplifying the case of ohmic electronic conduction and li-
near ionic drift in a uniform field with average ion mobility , 
the following results are obtained: 

( ) ( ) (1 ( ) )ON OFFM w R w t D R w t D   , (3) 

( ) ( )v ONw t q t R D , (4) 

2( ) (1 ( ) )OFF v ONM q R q t R D  , (5) 

where D is the total width of the titanium dioxide film, w(t) 
is the width of the region of high dopant concentration on 
the titanium dioxide film, ROFF and RON are the limit va-
lues of the memristor resistance for w(t)=0 and w(t)=D. 

w

D
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V

doped undoped

 
FIGURE 3 The structure of HP memristor 

A remarkable difference with any traditional elements 
circuit characteristics of HP memristor is when a sinusoidal 
wave applied to a HP memristor, the current versus voltage 
relationship will be a pinched loop as shown in Fig. 4.  
 
4 Mathematic models of memristor  
 
Several different types of mathematic model have been 
using to describe memristor and HP memristor in recent 
years, in chronological order the models can be listed as: the 
cubic nonlinear model, the monotonic increasing and pice-
wise linear function model, parabolic curve model and the 
memristive system model. Next, each of these models will 
be introduced in detail. 
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FIGURE 4 i-v relationship of the HP memristor [2] 

 
4.1 CUBIC NONLINEAR MODEL 
 
The cubic nonlinear model is the most popular one, the most 
simply one, also the most frequency using one in the mem-
ristor theoretical research. As we known, memristor has two 
types, the flux-controlled type and the charge controlled 
type. In this model, the flux-controlled memristor is shown 

as bellow [9, 18-21]: 

3( )q     , (6) 

and according to Eq. (1), we can obtain the memconduc-
tance formula as: 

2( ) ( ) / 3W dq d       , (7) 

where α, β are positive. 
Similarly, the charge-controlled memristor cubic non-

linear model and its memristance are given by: 

3( )q q q    , (8) 

23/)()( qdqqdqM    (9) 

where λ, γ are positive. 
From Eq.(6)- (9), we can see that different types of cubic 

nonlinear memristor models are similar in form, and have 
homologous character, so next we will use the flux-cont-
rolled memristor as a example to analyze the cubic nonlinear 
memristor model’s characteristics. 

(1) Basic characteristic 
Based on Eq.(6) and (7), the charge-flux relation and the 

memconductance-flux relation of the cubic nonlinear model 
of flux-controlled memrisor are shown in Fig.5, and from 
the W-φ relation we can see that one memconductance value 
corresponds to two different flux in this model. 
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FIGURE 5 q-φ and W-φ relationships inside the cubic nonlinearity flux-

controlling memristor 

(2) Power characteristic 
The instantaneous power consumes on the flux-cont-

rolled cubic nonlinear model of memristor is: 

)3()()()()( 222   tvWtvtp , (10) 

Obviously, the right hand of Eq.(10) is always greater 
than or equal to zero, and for any time t ≥ t0, the following 
equation is satisfied: 

0)(
0

  dp
t

t

, (11) 

which implies the cubic slippery nonlinear model of flux-
controlled memristor is passive .  

(3) Circuit characteristic 
It is well-known that a v-i relation with “8” shape will 

come out when a sinusoidal wave as the input signal applied 
to the HP memristor. So here, by adding a sine signal to the 
cubic memristor model, we can get the v-i curve as shown 
in fig.6, in which the special pinched loop character is 
shown, and the loops become much more narrower when 
the frequency of the input signal is higher, which indicates 
that the cubic model of memristor has the same circuit 
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characteristics as the HP memristor. 
During the simulation, we found that the value of α, β 

influence the pinched loop so much, which are manifest as: 
under the same amplitude and frequency sine wave as input 
signal, much more smaller α, β are, much wider the v-i 
pinched loops are, vice versa. 

The cubic nonlinear model of memristor is widely used 
mainly because of the following reasons: Firstly, the q-φ 
relation of this model is much similar as it described in Fig.2. 
Secondly, not only from the mathematical description, also 
from the optical point of view, this cubic model is the 
simplest one which can be used to describe the pinched loop 
relation between  charge and  flux of a HP memristor. 
Thirdly, using this model to instead of the nonlinear diode 
with picewise linear character in the Chua’s circuit, the 
steadier chaotic phenomenon can be obtained. 
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FIGURE 6 I-V characteristics of cubic nonlinearity model for flux-

controlling memristor, when unit amplitude and different frequency sine 

wave applied to it 

 
4.2 PASSIVE MONOTONIC INCREASING AND 

PIECEWISE LINEAR (PMIPL)MODEL OF 
MEMRISTOR 

 
Passive monotonic increasing and piecewise linear model, 
which is proposed firstly in 2010[22], the charge-controlled 
memristor under this model is described as： 

),11)((5.0)(  qqbabqq  (12) 
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and the flux-controlled memristor of this model is: 
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where the a, b, c and d are positive. 
On the account of the symmetry of the charge-controlled 

and flux-controlled model above, during the following study, 
the flux controlled model is used as a example helping to 
analysis this kind of memristor mathematic model. 

(1) Basic characteristic 
In this model the relation between charge-flux and 

memconduction-flux is \shown in Fig.7, from which we can 
see this model displays directly the nonlinear relation 

between the charge and flux, and the W-φ relation shows 
different fluxes generate only two different constant 
memconductance values in this model. So these properties 
are not in accordance with the HP memristor, but not against 
the character of the definition of memristor. 

(2) Power characteristic 
The instantaneous power consumes on the memristor in 

PMIPL model is:  












1,)(

1,)(
)()()(

2

2

2






tdv

tcv
Wtvtp , (16) 

because c and d are positive, in any case the instantaneous 
power consumes on the memristor describe by the PMIPL 
model will be greater than or equal to zero. So we can get: 

0)(
0

  dp
t

t
, (17) 

Therefore the memristor model described by Eq.(14) 
and (15) are passive. 
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FIGURE 7 q-φ and W-φ relations inside monotone increasing and 

piecewise-linear passive flux-controlling memristor 

(3) Circuit characteristic 
When an external voltage v(t) is applied to the PMIPL 

model of memristor, the current flows through it will be: 

,
1),(
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When v(t) is a sinusoidal wave, the current and voltage 
time series in the PMIPL memristor model is shows as Fig.8, 
and from Fig.9 we can see the i-v relation in this model is a 
pinched loop. Because the current flow through the memris-
tor is controlled by flux, we can see there are mutation 
current waves in Fig.8 (a), which happen at special points, 
where the currents are not proportional to the input voltage 
but jump directly to another state instead according to 
Eq.(18). Such a mutation results in the unsmooth pinched 
loop happens in Fig. 9. 

 
FIGURE 8 Current goes through and voltage across the PMIPL model for 

passive flux-controlling memristor 
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FIGURE 9 i-v characteristics of PMIPL model for flux- controlling 

memristor 

 
4.3. ACTIVE MONOTONIC INCREASING AND 

PIECEWISE LINEAR (AMIPL) MODEL OF 
MEMRISTOR 

 
(1) Basic characteristic 

Using a negative resistor -R or a negative conductor -G 
composed with a passive memristor, an active memristor 
will be built as shown in Fig. 10. 
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FIGURE 10 AMIPL model for flux-controlling memristor which consists 

of a passive memristor and a -G or a -R 

In the following study, we will take the flux-control 

memristor for example to analyze this kind of model. Accor-

ding to the current node equation, we can derivate the rela-

tion between the flux and the charge in the AMIPL model: 
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So according to the definition of the flux-control mem-

ristor in (7) and (9), we can get the memconductance in 

AMIPL model as follows: 
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The charge-flux relation described by Eq.(19) and (20) 

are shown in Fig. 11. According to the analysis above, this 

active memristor model have two forms, one case is c-G and 

d-G are all less than zero as shown in Fig.11(a), and the 

other case is the summation of c-G and d-G is passive, one 

of it’s continuous curves  is shown in Fig. 11(b). Fig.11(c) 

and (d) show each memconductance and the flux relation in 

Fig. 11(a) and (b) respectly. 
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FIGURE 11 q-φ and W-φ relationships inside AMIPL flux-controlling 

memristor 

(2) Power characteristic 
The instantaneous power consumes on the AMIPL 

model of memristor is: 


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Because c, d, G are passive, so only when c-G or d-G are 
less than zero, or their summation is positive during t0 to t, 
we can obtain that at any time t≥t0,  the AMIPL model of  
memristor can be obtained by the way in Fig.10. 

0)(
0

  dp
t

t

, (22) 

(3) Circuit characteristic 
When a sine wave signal as input power applied to this 

active memristor, we can obtain the current and the input 
signal series in Fig.12, and because of the suddenly change of 
the conductance happened in Fig. 11 (c) and (d), we can see 
the i-v characteristic is an unsmooth pinched loop in Fig.13. 

 
FIGURE 12 Current goes through and the voltage across the AMIPL 

model for flux-controlling memristor 
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FIGURE 13 i-v characteristics of the AMIPL model for flux-controlling 

memristor 
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At present, AMIPL model are mostly used in the mem-
ristor-based chaotic research, because this model’s charac-
teristic is similar to the nonlinear diode in the Chua’s circuit. 
So using it in Chua’s circuit is surely much easier to get a 
better chaotic result. But from Fig.13 we can see the external 
circuit character of this model is some difference from the 
HP memristor’s . 

All the above introduced models are directly postulating 
the mathematic models of memristor corresponding to the 
specified relations between q-φ in memristor, and the mem-
ristors’ values of these kinds only can be get by derivating 
from their q-φ relation. Now what we are going to discuss 
are two models, which define the inner variables in the 
memristor, also give the relation between memristance or 
memconductance and their inner variables. 
 
4.4 PARABOLIC CURVE MODEL OF MEMRISTOR 
 
In [23], Chua presented an autonomous circuit that has only 
three circuit elements: A linear passive inductor, a linear 
passive capacitor and a nonlinear active memristor. In this 
paper, a new memristor model is given by: 

)1()( 2  xxR 
, 

ixxidtdx  
 (23) 

This model is derived from the definition of memristive 
system propsed by Chua in 1976: 

MM ixRv )( , ),( Mixfdtdx   (24) 

where iM is the current flow through the memristor, vM is 
the voltage applied to the memristive system,  x is the inner 
variable of the memristive system, R(x) is the memristance 
and f is the variable function of the system. 

This model is called parabolic curve model of memristor, 
because the relation between the memristance and the va-
riable inside the memristor is a parabolic curve shown in 
Fig.14. 

 
FIGURE 14 Relation between the memristance and the internal state of 

this memristive system 

What we should point out is, this memristor model, 
which focus on the simplest chaotic circuit built by a mem-
ristor in [24], so it can be seen as a special case of memristor 
model, and it can not fix the demand of the HP memristor, 
because under a sine wave input condition, there’s no pin-
ched loop come out. 

4.5 MEMRISTIVE SYSTEM MODEL OF MEMRISTOR 
 

In 1976, [24-25] show the definition of the memristive sys-

tem as Eq.(25), which is not only restricted to the memristor, 

but also fit memcapcitor and the meminductor: 

),,,(),(),,()( tuxfdtdxtutuxgty   (25) 

where x is a set of n state variables describing the internal 

state of the system, u(t) and y(t) are the input and output 

signals, and they should be any complementary structure 

variables, like current, voltage, charge and flux, g is the 

respond function, f is a continuous n dimensional vector 

function. 
(1) Basic characteristic 
When u(t) and y(t) indicate voltage and current, Eq. (25) 

describes a the model of memristor, and the current-
controlled model is shown as : 

),,,(),(),,()( tIxfdtdxtItIxRtVM   (26) 

where VM(t) and I(t) are the voltage applied to the mem-

ristor and the current flow through the memristor, R is the 

memristance, and when the R in Eq.(26) is dependent on the 

member of the charge go across the memristor, Eq.(26) can 

be written as Eq.(27), which is regarded as the charge-con-

trolled memristor model: 

)())(()( tItqRtVM  , (27) 

The voltage controlled model is shown as： 

),,,(),(),,()( tVxfdtdxtVtVxGtI MMM   (28) 

where G is memconductance, and it’s value is related to the 

flux inside the memristor, that’s why we call this model is 

flux-controlled memristor model: 

)())(()( tVtGtI M , (29) 

From Eq.(27) and (29), we can obtain that, no matter 
current or voltage control model it is, one thing is same, that 
is when the voltage applied to the memristor is zero, the 
current will be zero, vice versa. So, the v-i curve in this 
memristive system model must across the origin.  

(2) Power characteristic 

In order to meet both of the definition of the memristor 

which is proposed by Chua in 1971 and the characteristics 

of the HP memristor, an f function is given in [26] as: 

)()(]))[(5.0(

),,(

21 xRRxVVVVV

tVxfdtdx

TMTMM

M





 , (30) 

where ( ) 
 
is a step function: 

1 0
( )

0 0


 
  

 

， 

， 
, (31) 

R1 and R2 are the smallest and the biggest memristances 

respectively. So if R1 and R2 are positive, the memristance 

in this model will be positive, this model is a passive model. 

The figure of such a f function is shown in Fig.15. 
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FIGURE 15 The figure of f function 

(3) Circuit characteristic 
By integrating both sides of Eq.(30), we can get: 

),,( txfx 
, (32) 

and the memconductance can be described as: 

),,(11 txfxG  , (33) 

which shows that the memristance is controlled by the flux. 
According to (30)-(33), we can get the pinched loop of the 
v-i relation in Fig.16., from which we can see that as the 
frequency of the input signal grows, the pinched loop will 
be narrower, and this characteristic is in accordance with the 
one pronounced by the HP lab.  

In addition, this model not only shows the relation of the 
constitutive variables, but also gives the way how to calculate 
the memristance or the memconductance from the input signals.  
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FIGURE 16 i-v characteristics of the cubic nonlinearity model for flux-

controlling memristor 

 
5 LDR memrisor mathematic model 
 
In 2011, a new circuit implementation of memristor was 
developed and described in paper [17], however the 
mathematic description of this equivalent circuit model is 
not given. So based on the above analysis, we found that the 
memristive system model matched the LDR memristor 
much better, and the reasons are as follows: 

Firstly, according to Fig.17, which is the block diagram 
of the novel analogue model of a memristor in [10], we can 
obtain the LDR analogue model is a flux controlled mem-
ristor, and the flux φ is getten by integrating the input vol-
tage vi, this character is agree with Eq.(32). 

Secondly, the novel memristor circuit model in [17] is 
built with a LDR, which is an indirect device that helps sepa-
rating the circuit in two parts, the control circuit and a light 
controlled resistor, just because of this special circuit con-
struction, the remote control from flux to memristance can 

be realized, also the measurable character can be obtained. 
So by analyzing the existing mathematic models above, we 
can obtain that only memristive system model of memristor 
with the flux-controlled memristance or memconductance 
explicit formulation property as shown in Eq.(30)-(32), and 
this helps the memristive system model to display the mea-
surable value of the memristor well. 


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FIGURE 17 Block diagram of the memristor based on LDR 

Thirdly, the LDR memristor and memristive system mo-
del all can get a perfect pinched loop under a sine wave input, 
and the width of the loop is inversely proportional to the fre-
quency of the input signal too (the experimental results are 
shown in Fig. 18). Such a character is same as the property 
in Fig.16. 
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Figure 18 v-i experimental curve under sine wave (0.8V, 5Hz and 0.8V 

10Hz) 

So according to the above analysis, the memristive sys-

tem mathematic model is determined to describe the LDR 

memristor. And by using this model to theoretical analysis 

the LDR LDR based chaotic circuit, the dynamic charac-

teristics was done in [26], which indicate the effectiveness 

of the mathematic expression. 
 
6 Conclusion 
 

In this paper, the 5 existing mathematic models used to des-

cribe memristor including the HP memristor are studied 

mainly in three aspects, the basic character, the power cha-

racter and the circuit character. By analyzing the relations 

between each mathematic model and the LDR memristor 

structure and character, the memristive system definition 

and it’s model are decided to be the LDR memristor’s ma-

thematical model. Therefore, this study gives the theoretical 

basis for LDR memristor application research in the future.  
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