
COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(2) 29-36 Ramesh G, Rajini Kanth T V, Ananda Rao A

29
Mathematical and Computer Modelling

Metrics for consistency checking in object oriented model
transformations

G Ramesh1*, T V Rajini Kanth2, A Ananda Rao1

1CSE Department, JNT University Anantapur Ananthapuramu, Andhra Pradesh, India
2CSE Department, Sreenidhi Institute of Science and Technology, Ghatkesar Hyderabad, Telangana, India

*Corresponding author’s e-mail: ramesh680@gmail.com

Received 29 March 2017, www.cmnt.lv

Abstract

Model transformation is the cornerstone of Model-Driven Engineering (MDE) as it is crucial in Computer
Aided Software Engineering (CASE) towards Object Oriented Analysis and Design (OOAD) and Object
Oriented Programming (OOP). It also plays vital role in entity relationship model. Therefore it is
indispensable to be treated as traditional software artefacts and assess quality of model transformations.
Model-to-model transformations are from Platform Independent Model (PIM I) to Platform Independent
Model (PIM II) and from PIM to Platform Specific Model (PSM). The goal of our research in this paper
is to make these model transformations measurable. However, it is confined to proposing a set of metrics
pertaining to consistency checking. The quality of transformations is measured in terms of consistency.
The metrics proposed in this paper are general and can be reused. We evaluate the metrics using our
framework named Extensible Real Time Software Design Inconsistency Checker (XRTSDIC) which
supports end-to-end transformations of object oriented models. Our empirical study revealed that the
proposed metrics add value to our model consistency checker as they quality in model transformations.

Keywords:

Model Driven Engineering

(MDE),

XRTSDIC,

model transformations,

consistency checking,

quality measures

1 Introduction

Model Driven Approach (MDA) is an important alternative
for developing information systems. The underlying
principle of this approach is defining abstract models that
can be used for implementations. Unified Modelling
Language (UML) is widely used to model information
systems that are built in object oriented approach. As part of
Model Driven Engineering (MDE) design and exploitation
of domain models became important in software
development. The conceptual models can help understand
development process quickly besides ensuring that the
productivity is more with Computer Aided Software
Engineering (CASE) tools. Model transformations can be
part of CASE tool. This research is our ongoing work on
consistency checking in model transformations. This paper
focuses on deriving metrics for checking consistency of
model transformations.

Our prior works [1-5] provide a series of related research
efforts in realizing a framework that supports end-to-end
approach for model transformations besides detecting and
tracking software design inconsistencies. In [1] we defined
a framework named Extensible Real Time Software Design
Inconsistency Checker (XRTSDIC) which checks model
inconsistencies and provide feedback dynamically. The
framework is flexible and extensible. It has placeholders for
future methods besides having personalized configuration
and execution models. In [2] explores the realization of the
framework proposed in [1] with consistency rules, provision
for tolerance of inconsistencies to support notion of “living
with inconsistencies” in the form of a prototype application.

In [3] we improved the framework with rule detector
algorithm, consistency checker algorithm, and visualization
algorithm. In [4] our framework is further enhanced and
evaluated with end-to-end model transformations from
Platform Independent Model (PIM) to Platform Specific
Model (PSM) often with intermediate PIMs. It focused on
class diagram transformation rules, Entity Relationship
Diagram (ERD) transformation rules, handling issues with
class relationships, and case study to evaluate the work. In
[5] the framework is evaluated with UML class diagram to
source code of different object oriented languages.

Our contributions in this paper include derivation of metrics
for consistency checking of object oriented models and
integrating with our framework XRTSDIC to leverage its
utility further. A case study is provided to evaluate the
framework with the metrics derived. The remainder of the
paper is structured as follows. Section II provides review of
literature. Section III presents the proposed system in detail.
Section IV presents quality attributes. Section V presents the
proposed metrics. Section VI shows Evolution methodology
and experimental results while section VII concludes the paper.

2 Related works

This sections reviews related works. The reviewed content
is categorized into model transformations and metrics used
to measure quality of model transformations.

2.1 MODEL TRANSFORMATIONS

Kuzniarz et al. (2003) [16] focused on consistency issues in

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(2) 29-36 Ramesh G, Rajini Kanth T V, Ananda Rao A

30
Mathematical and Computer Modelling

UML-based software design models. They proposed
consistency rules for different transformation models. It has
mechanisms for finding inconsistencies in the design
models made of UML. Hutchison et al. (2009) [8] focused
on model-driven software engineering for self-adaptive
systems. Paredis et al. (2010) [6] model transformations
between two languages that are complement to each other.
They are known as Modelica and SysML from OMG.
SysML is a generalized modelling language while Modelica
for analyzing systems with discrete time dynamics. The
transformation between them is bi-directional. In [7] Model
Driven Interoperability is focused for achieving
interoperability transformations in distributed environments.

Biehl et al. (2010) [19] made a good review of model
transformations. They explored many transformation
approaches such as graph-based, template-based, and hybrid
approaches besides presenting model transformation languages
such as EMF Henshin, ATL, Query/View/Transformation
(QVT), SmartQVT, ETL, XSLT and ModelMorf. They opined
that synthesis and integration are the two advantages of model
transformations broadly. Kessentini et al. (2012) [9] focused
on search-based model transformation with example. Model
Transformation (MT) became very important activity in
software engineering as it is supported by Computer Aided
Software Engineering (CASE) tools. They proposed an
approach that is independent of source and destination
formalisms and works for any source model. Model
Transformation By Example (MTBE) is the main focus of
them. However, they explored different methods for
transformation including model transformation based on search.

Rodriguez et al. (2010) [10] proposed a method for semi-
formal transformation a business process into use case and class
diagrams of UML by adapting MDA. They focused on security
aspects in the modelling. Towards this end they defined
transformation rules to transform business process into class
and use case diagrams. Their semi-automated approach could
obtain useful artefacts of information systems. Hermann et al.
(2010) [12] employed triple graph grammars (TGG) for
efficient model transformations. Bi-directional model
transformations are possible with well known Triple Graph
Grammars. Towards this end, they employed Negative
Application Conditions (NAC) as well. NACs can improve
model transformation specifications. Garcia et al. (2012) [18]
introduced a semi-automatic process that takes care of model
transformation co-evolution. It has two phases namely
detection phase and co-evolution phase. The former takes care
of detects changes to metamodel while the latter takes care of
performing required actions to complete co-evolution process.

2.2 METRICS

Chidamber and Kemerer (1994) [13] focused on a suite of
metrics that can be used for improving object oriented design
(OOD). Hutchinson et al. [14] provided an approach for
assessing MDE. Generally MDE promotes software
development with advantages such as interoperability,
maintainability, portability and productivity. The maturity of
MDE is assessed with automation. The degree of code
generation is from 65% to 100%. Amstel and Brand (n.d) [22]
studied model transformations made using ATL. They
assessed quality of transformations using metrics. They
classified metrics into different categories. They are rule

metrics, helper metrics, dependency metrics and
miscellaneous metrics. They concluded that metrics alone are
not adequate to assess quality of model transformations.
Moreover those metrics are to be associated with quality
attributes so as to relate with quality model of transformations.
The quality assessment provided by their metrics and manual
assessment is compared to know the error rate in quality
assessment of chosen model transformations.

Amstel et al. (2008) [25] studied possible measures for
quality transformations. They proposed many consistency
related metrics such as number of code clones, number of
unused variables, number of different types per variable
name, and different variable names per type. Kapova et al.
(n.d) [23] explored code metrics on model-to-model
transformations for evaluating maintainability. They used
automated metrics such as transformation size metrics,
relational metrics, consistency metric and inheritance
metrics. Apart from these metrics, they employed manually
gathered metrics such as similarity of relations, and number
of relations that follow certain design pattern. The
computation of metrics is made using QVT transformations
and metrics support availability.

Vignaga (2009) [24] applied metrics to measure ATL
model transformations. There are many quality metrics such
as conciseness, consistency, completeness, modularity,
reuse, reusability, modifiability and understandability. The
unit metrics available with ATL include Number of
Imported Libraries (NIL), Total Number of Imported
Libraries (TIL), Number of Helpers (NH), Number of
Helpers without Parameters (NHP), Balance of a Unit (BOU)
and Number of Helpers per Context (NHC). Other metrics
available are categorized into module metrics, library
metrics, rule metrics, matched rule metrics, lazy matched
metrics, called matched rule metrics, and helper metrics.

Testing model transformations is an important activity
in MDA. Baudry et al. (2010) [11] identified barriers to
systematic testing of model transformations. They
considered model transformation example of converting
hierarchical state machine to flattened state machine the
hierarchical state machine has many incoming and outgoing
transmission. The states are of many types namely simple
states, initial states and final states. Apart from these,
composite states are also available. The barriers identified
for model transformations include heterogeneity of
transformation languages, lack of tools for model
management, and complexity of inputs and outputs.

Kessentini et al. (2011) [20] focused on model
transformation testing using two steps known as selection of
test cases and finding test oracle functions. Their approach
also focuses on finding the risk of detected faulty candidates
and sorts them in the order of risk. They used immune
system metaphor of biological science in order to achieve
this. They defined precision and recall measures to evaluate
the transformations. Pean (2012) focused on change metrics
to measure incrementally built model transformations. They
defined language feature metrics and change metrics based
on abstract syntax difference model.

Arendt and Taentzer (2013) [21] used Eclipse Modelling
Framework and explored it for quality assurance. They
employed 6C goals such as correctness, completeness,
consistency, comprehensibility, confinement, and
changeability. They explored project specific quality

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(2) 29-36 Ramesh G, Rajini Kanth T V, Ananda Rao A

31
Mathematical and Computer Modelling

assurance techniques. Therefore it is made possible to specify
such techniques based on the need of the project. Their
specification supports model smells detection using metrics
and anti-patterns. They also employed Domain Specific
Modelling Language (DSML) known as SimpleClassModel
(SCM) for demonstrating quality assurance of models.

Chitra and Sherly (2016) [15] used graph based models
for verification of software design models. The process of
model verification is used for observing behaviour
preservation. With verification it is possible to have
refactoring. Here graph isomorphism is the property utilized
for model verification. Rosenberg and Hyatt (n.d) discussed
software quality metrics for systems built on object
orientation. Then they evaluated metrics using certain
criteria such as testability, maintainability, reusability,
understandability, complexity and efficiency. The metrics
covered by them include cyclomatic complexity, size,
comment percentage, weighted methods per class, response
for a class, lack of cohesion of methods, coupling between
object classes, depth of inheritance tree, and number of
children. Amstel et al. (n.d) [26] proposed metrics for
assessing ASF+SDF model transformations. Their metrics
are related to different quality attributes such as
understandability, modularity, modifiability, reusability,
completeness, and consistency.

3 Our framework: XRTSDIC

Our framework defined in [1] is known as Extensible Real
Time Software Design Inconsistency Checker (XRTSDIC).
It is presented in Figure 1. It gives an overview of the generic
approach for model inconsistency checking with provision
for personalized configuration and execution model. The
framework allows modelling tool selection, consistency rule
language selection and visualization approach selection.
These are pertaining to personalization which does mean that
the models drawn by users are associated with such users and
their configurations are retained.

FIGURE 1 Overview of our Framework XRTSDIC

This framework was implemented in [1] and made further
enhancements in [2-5]. In this paper we focused on improving

it further to facilitate measures for checking quality of model
transformations. Quality attributes and consistency metrics
are discussed in section 4 and 5. We considered only model
consistency metrics that check the quality of model
transformations. The proposed metrics are applied to a case
study where model transformations are made from class
diagram (PIM) to sequence diagram (PIM). And then the
class diagram is transformed into source code (PSM). The
metrics are useful to discover any inconsistencies in the way
of model transformations from source to target. The source is
reused number of times in model transformations as the same
source is transformed into multiple targets.

The execution model of the framework helps developers
to make use of a modelling tool to build models and then
visualize any model inconsistencies. The tool also supports
rectification of inconsistencies besides presenting them in
chosen phenomenon. The execution model is based on the
algorithm 1 presented here.

As shown in algorithm 1, the execution model pseudo
code provides useful logic that helped in building the tool.
The tool here is enhanced with proposed metrics presented
in section 5. However, the consistency rules are taken from
our previous work [3] where case study and evaluation of
model inconsistencies are demonstrated. In this paper we
focused on non only inconsistency checking but also
measure quality of model transformations.

Algorithm 1: Flow of Execution Model [3]

Class diagram to sequence diagram transformation
rules

Class Name  Instance of Class

Consistency and transformation rule:

If(new instance is created) then it should have a corresponding class

in class diagram

Class Method  Interaction in sequence diagram

Consistency and transformation rule:

The operation invoked by source should really exist in destination

Listing 1: Transformation Rules from Class Diagram to Sequence

Diagram

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(2) 29-36 Ramesh G, Rajini Kanth T V, Ananda Rao A

32
Mathematical and Computer Modelling

Class diagram to source code transformation rules

Class diagram contains class name, attributes and
methods. The class diagram is transformed to corresponding
source code (classes) according to the object oriented
language selected.

Class Name  Class Name

Consistency and transformation rule:

if(a new class is created then)

the class name should be unique and should be available in class

diagram

Class Attribute  Class Instance Variable

Consistency and transformation rule:

if(a new attribute is created then)

the attribute name should be unique and should be available in the

class attributes

Class Attribute Type  Class Attribute Type

Consistency and transformation rule:

if(attribute type is determined then)

the attribute type should match or compatible with that of class

attribute

Class Method  Class Method

This method should match or compatible with that of class method.

Class Method Arguments  Class Method Arguments

The arguments in the generated classes should match arguments of

method. However it is subject to the support in UML notation of

class diagram.

Class Method Return Type  Class Method Return Type

The return type of method should have same or compatible type in

generated class

Listing 2: Consistency and transformation rules (Class Diagram  Source

code)

These rules are applied when the transformation takes
place. Again the generated source code is based on the
functionality of corresponding dialect chosen. The dialect
can provide accurate source code generation.

4 Quality attributes

With respect to model transformations, many quality
attributes are identified. These quality attributes can be
applied to many software artefacts. Particularly attributes that
can be applied to model transformations are described here.

Understandability: This attribute refers to the amount
of effort needed for user to understand model transformation.
It also promotes reusability and modifiability. As
understanding can help in modifications and reusability, it
plays important role in model transformations. Model
transformation is sourcetarget model and its syntax and
symantics are to be easy to understand.

Modifiability: Model transformations can be adapted to
different context or altered to have additional functionalities.
Changing requirements may force a model transformation
to be modified. Another reason for the change is the
language. When language needs to be changed, it warrants
changes in model transformations. This attribute refers to
the amount of effort required for alter model transformation
in order to accommodate new requirements.

Reusability: It is the attribute that refers to the extent to
which a model transformation or a part of it can be reused
in other model transformations without making changes to
the model being reused. Thus this attribute differs from
modifiability attribute which causes modifications to model
transformations. Espeically, the reusability attribute comes
into picture when a source is trnaformed to different target

and vice versa.
Reuse: It is somewhat related to reusability. However, it

refers to the extent to which a model transformation is
actually reused. It is best practice to reuse model
transformations as much as possible instead of reinventing
the wheel. Moreover MDE advocates reuse. Reuse in model
transformations is common as source is common for many
transformations. Therefore reuse can be considered as a
measure which indicates how best a model can adhere to the
principles of MDE.

Modularity: This attribute refers to the extent to which
a given model transformation is built systematically.
Systematic structure is essential to have modularity and
every module in the model transformation should have its
own purpose. Again modularity is pertaining to reusability.
When functionality is repeated across modules, it is possible
to reuse model or part of model transformations. Therefore
the number of steps involved in the model transformation
also can relate to modularity.

Completeness: This attribute refers to the extent to
which model transformation is built fully. A model
transformation is said to be complete when it has all parts of
source model are completely transformed to target model
according to specifications. In other words, the model
transformation is made with all functionalities. An
incomplete transformation results in target model which is
not complete.

Consistency: This is the attribute which refers to extent
to which a model transformation is without conflicts
surfaced. According to Boehm [28] there are two kinds of
consistencies. They are known as internal and external
consistencies respectively. When uniform notation is
maintained across the model transformation, it is known as
internal consistency. It is often related to understandability.
Internal inconsistencies can lead to target model in model
transformations. External consistency refers to the extent to
which model transformation adheres to given specifications.

Conciseness: This attribute refers to the extent to which
model transformation has lack of superfluous information
such as unused function parameters, code clones and so on.

5 Proposed metrics

This section provides metrics we have defined for
measuring consistency and conciseness of model
transformations. The main focus of these metrics is to
measure consistency in model transformations in general.
There are several measures possible. However, we like to
define measures that are tool independent. Therefore the
consistency measures defined by us are number of
signatures with improper arguments (RSIA), number of
unused variables (ROUV), number of code clones (NOCC),
Population of Clone Class (POP), and Ratio of Non-
Repeated Token Sequences (RNRS).

5.1 RATE OF SIGNATURES WITH IMPROPER
ARGUMENTS (RSIA)

Model transformations from class to corresponding source
code (PIMPSM) of target language can exhibit
inconsistencies. Every function modelled in the class
diagram needs to be transformed into a function signature

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(2) 29-36 Ramesh G, Rajini Kanth T V, Ananda Rao A

33
Mathematical and Computer Modelling

with appropriate arguments. When it does not happen
properly, it results into inconsistency. This kind of
inconsistency is measured using NSIA.

RSIA = FUNimproper(A)/ FUNwhole(A)

FUNimproper(A) indicates the number of functions with
improper signature and FUNwhole(A) indicates all the
functions that have been transformed. This measure is used
to discover inconsistencies in model transformations in
terms of number of functions containing improper signature.
In other words it finds number of functions that are not
consistency in terms of arguments.

5.2 RATE OF UNUSED VARIABLES (ROUV)

This measure is used to know the number of variables which
are not used in the model transformations. The unused
variables can affect conciseness quality.

ROUV = VARunused / VARall

Here VARunused refers to the number of variables that are
declared but not used in the application. VARall refers to all
the variables declared in the application.

5.3 NUMBER OF CODE CLONES (NOCC)

Due to signatures with near similar arguments code
repetition can occur in model transformations. Therefore
this measure is relevant to know model inconsistencies.

NOCC = COUNT(CC)

Where CC refers to code clones and the COUNT(CC)
returns the number of code clones. Number of code clones
or duplicate pairs of code is a good measure which may help
to discovery model inconstancies.

5.4 POPULATION OF CLONE CLASS (POP)

The number of clone elements in a clone is measured using
POP. A clone class is a class that may contain at least one
clone pair. Clone pair is two pieces of code that are identical.
The increase in POP reflects increase in clones in system.

POP = Elementsclone/Elementsall

Here Elementsclone refers to the count of elements in the
code clones while the Elementsall refers to the number of
elements.

5.5 RATIO OF NON-REPEATED TOKEN SEQUENCES
(RNRS)

Ratio of non-repeated token sequences refers to the ratio of
non-repeated token sequences in a given clone set. Higher
rate of RNRS indicates the presence of more non-repeated
token sequences in code clone. This metric is computed as
follows.

 
 

 
1

1

n

non repeated ii

n

while ii

LOS c
RNR S

LOS c










LOSnon-repeated (ci) refers to length of the non-repeated

token sequence of code clone ci. In the same fasion,
LOSwhile(ci) refers to while token sequence of code clone ci.
LOS stands for Length of token Sequence.

6 Evaluation methodology

The tool implemented by us is Extensible Real Time

Software Design Inconsistency Checker (XRTSDIC). It is

used to perform model transformations and consistency

checking. For evaluating metrics discussed in this paper

along with the performance of the tool, we invited five

industry experts who are aware of software engineering and

model transformations well. They spent their valuable time

on our request to provide ground truth for the case study

described in this paper. The ground truth is evaluated with

the system generated values with respect to metrics that are

used to evaluate the quality of model transformations done

by the tool. An average is computed for the independent

values given by the experts. The average values are

considered to be the ground truth and used in comparison.

6.1 CASE STUDY AND RESULTS

Our framework XRTSDIC with prototype application is

used to have a case study which helps in model

transformations with consistency checking. Besides it helps

in using the metrics presented in this paper to know quality

of model transformations. UML class diagram is

transformed into corresponding ERD. This process is done

by using transformation and consistency rules. There is

intermediate result in the form of XML file that encapsulates

classes in the PIM. Then the class diagram is transformed

into source code. The case study class diagram considered

is related to Hospital Management System (HMS). The

class diagram is as shown in Figure 2.

LoadFile

+input: String
+ipname: String
+tableModel1: DefaultTableModel
-tableModel2: DefaultTableModel
-instances: instances
+instancesWithPDF: Instances
-pdfValues: double
-dataset1: DefaultCategoryDataset
-dataset: DefaultCategoryDataset
-fclist: ArrayList
-fcDataset: DefaultCategoryDataset
-file: File
-fcDataset2: DefaultCategoryDataset
-jButton1: jButton
-jButton2: jButton
-jButton3: jButton
-jButton4: jButton
-jButton5: jButton
-jLabel1: jLabel
-jLabel2: jLabel
-jScrollPane1: JScrollPane
-jScrollPane2: JScrollPane
-jScrollPane3: JScrollPane
-jTable1: jTable
-jTable2: jTable
-jTable3: jTable
-jTextField1: jTextField

+LoadFile()
-void initComponents()
-void jButton1ActionPerformed(java.awt.event.ActionEvent)
-void jButton3ActionPerformed(java.awt.event.ActionEvent)
-void jButton4ActionPerformed(java.awt.event.ActionEvent)
-void loadFastClustering()
-void jButton2ActionPerformed(java.awt.event.ActionEvent)
-void loadC45()
-void jButton5ActionPerformed(java.awt.event.ActionEvent)
-void doProcess()
-String[] doCalculations(String[])
-static void main(String args[])

IrrelevantFeatureFrame

-jButton1: JButton
-jLabel1: jLabel
-jScrollPane1: jScrollPane
-jScrollPane2: jScrollPane
-jTextArea1: jTextArea
-jTextArea2: jTextArea
+mf: MainFrame
+fs: FeatureScores1
+Clsent: double

+IrrelevantFeatureFrame()
+void jButton1ActionPerformed(java.awt.event.ActionEvent)
+static void main(String[])
+void FindEntropy()
+void FindGain()
+void initComponents()

FIGURE 2 UML class diagram for FSC project case study (PIM I)

The class diagram is drawn using our framework. The

model transformation is done with two experiments. In the

first experiment, the class diagram is transformed into ERD.

Then the class diagram is also transformed to source code

using Java syntax and semantics. In either case, the model

transformation rules and consistency rules are employed.

The generated ERD is presented in Figure 3.

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(2) 29-36 Ramesh G, Rajini Kanth T V, Ananda Rao A

34
Mathematical and Computer Modelling

FIGURE 3 Transformed ERD (PIM II)

We made another empirical study on model
transformations. The UML class diagram (PIM) is first of
all transformed into another PIM model known as sequence
diagram. Afterwards the class diagram is transformed into
PSM known as source code of object oriented programming
languages like C++, Java and C#. We proposed a Dialect
hierarchy in Java language to handle transformation
semantics for Java, C# and C++ [5]. The transformation
dialect is a class that takes care of syntactical and semantic
differences based on the target language chosen. The model
transformation procedure and its flow are in our prior work
[5]. In this paper our focus is more on checking quality of
model transformations. Our enhanced framework
XRTSDIC is used to apply metrics to measure quality of
model transformations. Section 4 and 5 provided more
details on quality attributes and proposed metrics for quality
of consistency in model transformations. Following are the
details of metrics applied to know the quality of
transformations.

6.2 RESULTS AND DISCUSSION

We considered the case study pertaining to a data mining
application named FSC (Feature Selection and
Classification). Out of this project two important classes are
considered for empirical study. LoadFile and
IrrelevantFeatureFrame are the two classes presented in the
class diagram shown in Figure 2. These two classes in the
diagram are transformed into corresponding ERD as shown
in Figure 3. This is achieved by generating some
intermediate file in XML format. With the XML file, the
model transformation is verified for correctness. Then the
class diagram is transformed to source code using Java. This
too was verified for consistency. Then the source code is
implemented and subjected to metrics proposed in section 5.

6.3 RATE OF SIGNATURES WITH IMPROPER
ARGUMENTS (NSIA)

This metric applied to the source code in Java that is

LoadFile class. FUNimproper(A) value obtained is 0 and the

value for FUNwhole(A) is 12. RSIA is computed as follows.

RSIA = 0/12 = 0

6.4 RATE OF UNUSED VARIABLES (ROUV)

This metric when applied to LoadFile class of PSM, the
unused variables (VARunused) obtained is 0 and all variables
in the class (VARall) is 27. The ROUV is finally computed
as follows.

ROUV = 0/27 = 0

The result of ROUV metric is 0.24 which indicates rate
of unused variables.

6.5 NUMBER OF CODE CLONES (NOCC)

This metric is applied to LoadFile class in the source code.
The result obtained by the tool is 13. It is the count of code
clones which is the functionality f our tool which detects
clones and visualizes the same.

NOCC = 13

6.6 POPULATION OF CLONE CLASS (POP)

This metric when applied to LoadFile, the tool has returned
values for two variables involved in the metric. Number of
elements in clone Elementsclone has got 13 while the total
number of elements Elementsall has got 313. The result of
the metric is as given below.

POP = 13/313 =0.041533

Here Elementsclone refers to the count of elements in the
code clones while the Elementsall refers to the number of
elements.

6.7 RATIO OF NON-REPEATED TOKEN SEQUENCES
(RNRS)

This metric is applied to LoadFile class using our tool. The
tool obtained the sum of length of the non-repeated token
sequence of code clones and the sum of token sequence of
code clones. The results are as shown below.
LOSnon-repeated (ci) = 11

LOSwhile(ci) = 13

When these values are substituted into the metric, the
result is as shown below.

RNR = 11/13 = 0.846153

High RNR value indicates ratio of non-repeated token
sequences is more while lesser value indicates the repeated
token sequences is more. According to the methodology
described in section 6, the group truth is obtained from
human experts and the results are presented in Table 1.

TABLE 1 Results of metrics compared with ground truth

Measures Ground Truth Tool Result

RSIA 1 0

NOCC 1 0

ROUV 1 0

POP 0.9 0.041533

RNR 1.2 0.846153

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(2) 29-36 Ramesh G, Rajini Kanth T V, Ananda Rao A

35
Mathematical and Computer Modelling

From Table 1, it is evident that the results of metrics
computed by our tool and the results of metrics computed
by human experts are presented.

FIGURE 4 Results of quality metrics

The metrics are applied to the model transformations
and the results are compared with the ground truth. The
results are evaluated using metrics such as RSIA, NOCC,
ROUV, POP, and RNR. A new metric is derived from the
aforementioned metric. The details are as follows.

       1 1 2 2 3 3 ... n nP A P A P A P A
NewMetric

n

       


%n n nA P xW

nP final value

%nW weight percentage

nA weight value

RSIA

 1 1 1 1 30 /10 .% 0 0 3xA PxW  

1 1 1 0.3 1.3P A   

ROUV

 2 2 2 % 1 25 /100 0.25xA P xW  

2 2 1 0.25 1.25P A   

POP

 3 3 3 0.9 25 /100 0.% 225A P x xW  

3 3 0.9 0.225 1.125P A   

RNR

 4 3 3 1.2 20 /100 0.24% xA P xW  

4 4 1.2 0.24 1.44P A   

Substitute all these values in new metric equation
Then we get = (1.3+1.25+1.125+1.44)/4=1.27

TABLE 2 Result Comparison

Tool Result of new metric

Solid SDD 0.82

ConQAT 0.91

XRTSDIC 1.27

As shown in Table 2, it is evident that the derived metric
which provides overall performance of the framework in
terms of finding quality of transformations is compared with
other tools such as SolidSDD and ConQAT. The XRTSDIC
shows better performance.

FIGURE 5 Performance comparison

From Figure 5, it is evident that the performance of
XRTSDC is better when compared with SolidSDD and
ConQAT. SolidSDD and ConQAT are tools have
inconsistency metrics including code clones. However, they
do not have model transformation capabilities. XRTSDIC
thus shows superior performance.

7 Conclusions and future work

This paper presented our research made on Model Driven
Engineering (MDE) in terms of proposing metrics for
measuring quality of model transformations. It is our
ongoing research and the framework we built earlier [1]
named Extensible Real Time Software Design
Inconsistency Checker (XRTSDIC) which supports end-to-
end transformations of object oriented models. In this paper
we focused on defining consistency metrics meant for
measuring quality of model transformations. The metrics
are pertaining to model consistency as our research was
focusing on this area. Model-to-model transformations are
from Platform Independent Model (PIM I) to Platform
Independent Model (PIM II) and from PIM to Platform
Specific Model (PSM). The goal of our research in this
paper is to make these model transformations measurable.
Towards this end we proposed different metrics namely
number of signatures with improper arguments (RSIA),
number of unused variables (ROUV), number of code
clones (NOCC), Population of Clone Class (POP), and
Ratio of Non-Repeated Token Sequences (RNR). We
enhanced our tool [1] to demonstrate the proof of concept of
the application these metrics to know quality of model
transformations. Our empirical study revealed that the
proposed metrics add value to our model consistency
checker as they quality in model transformations.

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(2) 29-36 Ramesh G, Rajini Kanth T V, Ananda Rao A

36
Mathematical and Computer Modelling

References

[1] Ramesh G, Rajini Kanth T V, Ananda Rao A 2016 XRTSDIC: Towards

a flexible and scalable framework for detecting and tracking software

design inconsistencies Proceedings of the first A.P. Science Congress

[2] Ramesh G, Rajini Kanth T V, Ananda Rao A 2016 Extensible real time

software design inconsistency checker: a model driven approach

Proceedings of the International multi conference of engineers and

computer scientists 2016 Vol I, IMECS Hong Kong

[3] Ananda Rao A, Rajini Kanth T V, Ramesh G 2016 A model driven

framework for automatic detection and tracking inconsistencies

Journal of software 11(6) 538-53

[4] Ramesh G, Rajini Kanth T V, Ananda Rao A 2016 An extended model

driven framework for end-to-end consistent model transformation

Indian journal of computer science and engineering (IJCSE) 7(4) 118-

32 Aug-Sep 2016

[5] Ramesh G, Rajini Kanth T V, Ananda Rao A 2016 XRTSDIC: Model

Transformation from PIM to PSM Communicated to IET Software

[6] Paredis C J J, Bernard Y, Burkhart R M, de Koning H-P, Friedenthal

S, Fritzson P, Rouquette N F, Schamai W 2010 An overview of the

sysml-modelica transformation specification IEEE 1-14

[7] Bézivin J, Soley R M, Vallecillo A 2010 Editorial to the proceedings

of the first international workshop on model-driven interoperability

ACM 1-112

[8] Cheng B H C, Lemos R de, Giese H, Inverardi P, Magee J 2009

Software engineering for self-adaptive systems Springer 1-270

[9] Kessentini M, Sahraoui H, Boukadoum M, Omar O B 2012 Search-

based model transformation by example Softw Syst Model 209–26

[10] Rodríguez A, García-Rodríguez de Guzmán I, Fernández-Medina E,

Piattini M 2010 Semi-formal transformation of secure business

processes into analysis class and use case models: An MDA approach

Information and Software Technology 52 945–71

[11] Baudry B, Ghosh S, Fleurey F, France R, Traon Y L, Mottu J-M 2010

Barriers to systematic model transformation testing IEEE 1-12

[12] Hermann F, Ehrig H, Golas U, Orejas F 2010 Efficient analysis and

execution of correct and complete model transformations based on

triple graph grammars ACM 1-10

[13] Chidamber S R, Kemerer C F 1994 A metrics suite for object oriented

design IEEE transactions on software engineering 20(6) 1-18

[14] Hutchinson J, Whittle J, Rouncefield M, Kristoffersen S 2011

Empirical assessment of MDE in industry ACM 1-10

[15] Chitra M T, Sherly E 2016 Verification of behavior preservation in uml

sequence diagrams using graph models Indian journal of computer

science and engineering 7(4) 1-6

[16] Kuzniarz L, Huzar Z, Reggio G, Sourrouille J L, Staron M 2003

Workshop on Consistency Problems in UML-based Software

Development II IEEE 1-89

[17] Rosenberg L H, Hyatt L E 2010 Software quality metrics for object-

oriented environments IEEE 1-6

[18] García J, Diaz O, Azanza M 2013 Model transformation co-evolution:

a semi-automatic approach Springer 144-53

[19] Biehl M 2010 Literature study on model transformations Royal

institute of technology 1-28

[20] Kessentini M, Sahraoui H, Boukadoum M 2011 Example-based

model-transformation testing Autom Softw Eng, 199–224

[21] Arendt T, Taentzer G 2013 A tool environment for quality assurance

based on the eclipse modeling framework Autom Softw Eng 141–84

[22] van Amstel M F, van den Brand M G J 2010 Quality assessment of

ATL model transformations using metrics IEEE 1-15

[23] Kapova L, Goldschmidt T, Becker S, Henss J 2011 Evaluating

maintainability with code metrics for model-to-model transformations

ACM 1-16

[24] Vignaga A 2009 Metrics for measuring ATL model transformations

IEEE 1-15

[25] van Amstel M F, Lange C F J, van den Brand M G J 2008 Metrics for

analyzing the quality of model transformations ACM 1-11

[26] van Amstel M F, Lange C F J, van den Brand M G J 2009 Using metrics

for assessing the quality of ASF+SDF model transformations Springer

239-48

[27] Paen E 2012 Measuring incrementally developed model

transformations using change metrics Queen's University 1-125

[28] Boehm B W, Brown J R, Kaspar H, Lipow M, Macleod G J, Merrit M

J 1978 Characteristics of software quality North-Holland

AUTHORS

G. Ramesh

University studies: received B. Tech Degree in Information Technology from RGMCET, Nandyal, Kurnool Dist. Andhra Pradesh, M. Tech

Degree in Software Engineering from JNTUA college of Engineering, Ananthapuramu, Andhra Pradesh, India, Perusing Ph. D at JNTUA,

Anatapuramu, Andhra Pradesh, India

Scientific interests: Software Engineering and Big Data\

Publications: several papers in various International Journals/ Conference

Dr. T.V. Rajinikanth

University studies: received M.Tech degree in Computer Science & Engineering from Osmania University Hyderabad, Andhra Pradesh, India

and he received PhD degree from Osmania University Hyderabad, Andhra Pradesh, India. He is Professor of Computer Science & Engineering

Department, SNIST, Hyderabad, Andhra Pradesh, India.

Publications: more than 50 publications in various National and International Journals/Conferences. Organised and Program Chaired 2

International Conferences, 2 grants received from UGC, AICTE. Editorial Board Member for several International Journals.

Best Paper Award: “Design and Analysis of Novel Similarity Measure for Clustering and Classification Of High Dimensional Text

Documents” in the Proceedings of 15th ACM-International Conference on Computer Systems and Technologies (CompSysTech-2014), pg: 1-8,

2014, Ruse, Bulgaria, Europe. His main research interest includes Image Processing, Data Mining, Machine Learning.

Dr. Ananda Rao Akepogu

University studies: received B.Tech degree in Computer Science & Engineering from University of Hyderabad, Andhra Pradesh, India and

M.Tech degree in A.I & Robotics from University of Hyderabad, Andhra Pradesh, India. He received PhD degree from Indian Institute of

Technology Madras, Chennai, India. He is Professor of Computer Science & Engineering Department and currently working as Director

Academic and Planning, of JNTUA College of Engineering, Anantapur, Jawaharlal Nehru Technological University, Andhra Pradesh, India.

Publications: more than 100 publications in various National and International Journals/Conferences.

Best Research Paper award for the paper titled “An Approach to Test Case Design for Cost Effective Software Testing” in an International

Conference on Software Engineering held at Hong Kong, 18-20 March 2009. Received Best Paper Award: “Design and Analysis of Novel

Similarity Measure for Clustering and Classification Of High Dimensional Text Documents” in the Proceedings of 15th ACM-International

Conference on Computer Systems and Technologies (CompSysTech-2014), pg:1-8,2014, Ruse, Bulgaria, Europe. Also received Best

Educationist Award, Bharat Vidya Shiromani Award, Rashtriya Vidya Gaurav Gold Medal Award, Best Computer Teacher Award

and Best Teacher Award from the Andhra Pradesh chief minister for the year 2014. His main research interest includes software engineering

and data mining.

http://www.google.co.in/url?url=http://membership.sciencepublishinggroup.com/rajinitv&rct=j&frm=1&q=&esrc=s&sa=U&ved=0CBkQwW4wAmoVChMIq7i33MrHyAIVEY6OCh0jrwFl&usg=AFQjCNF_4G2LInsxE8Cou_MEEzFmaaFefQ

